Optimal mixture design of preparation of cold-adapted multiple species inoculant for biomass waste degradation
LUO Lijin1,2,3, WAN Li2, CHEN Hong1, XU Fule3, JIA Wei1, NIE Yilei1, WEN Cuilian4
1. Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China;
2. State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
3. Fujian Chaoda Modern Agriculture Technology Research Institute, Fuzhou 350003, China;
4. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
Abstract:In this paper, an optimum mixture design is used for the preparation of cold-adapted multiple species inoculant. Based on the Design Expert software, a quadratic model is established as a function of the component fractions of species, such as the Saccharomyces cerevisiae, the Trichoderma viride and the flora A25-3, on the enzyme activity of the CMCase, the FPase, the cellobiohydrolase, the proteinase and the α-amylase. The response values satisfying all expectations are optimized,and the most excellent combinations of the Saccharomyces cerevisiae, the Trichoderma viride and the flora A25-3 are 0%, 37.24% and 67.76%, respectively. The result of the verification experiment on the formulation is consistent with the prediction. The straw degradation experiments show that the multiple species inoculant has a high level of degradation efficiency for the straw at a low temperature. It suggests that there is a great application prospect of the multiple species inoculant under cold conditions.
[1] 张俙何, 洪春来, 朱凤香, 等. 农业废弃物资源化利用现状与前景展望[J]. 现代农业科技, 2013(20): 209, 218. Zhang Xihe, Hong Chunlai, Zhu Fengxiang, et al. Agricultural waste recycling use present situation and prospect[J]. Modern Agricultural Science and Technology, 2013(20): 209, 218.
[2] Gilbert H J. The biochemistry and structural biology of plant cell wall deconstruction[J]. Plant Physiology, 2010, 153(2): 444-55.
[3] Kubicek C P. Systems biological approaches towards understanding cellulase production by Trichoderma reesei[J]. Journal of Biotechnology, 2013, 163(2): 133-142.
[4] Banerjee G, Car S, Scott-Craig J S, et al. Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass[J]. Bioresource Technology, 2010, 101(23): 9097-9105.
[5] McClendon S, Batth T, Petzold C, et al. Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions[J]. Biotechnology for Biofuels, 2012, 5(1): 1-10.
[6] InoueH,DeckerS.R,TaylorL.E,etal,Identificationandcharacterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass[J]. Biotechnology for Biofuels, 2014, 7(1): 151.
[7] 唐景春. 生物质废弃物堆肥过程与调控[M]. 北京: 中国环境科学出版社, 2010: 17. Tang Jingchun. Biomass waste composting process and regulation[M]. Beijing: China Environmental Science Press, 2010: 17.
[8] 曲音波. 木质纤维素降解酶系的基础和技术研究进展[J]. 山东大学学报: 理学版, 2011, 46(10): 160-170. Qu Yinbo. Progress in basic and technological research of enzyme system for lignocellulosics biodegradation[J]. Journal of Shandong University: Natural Science Edition, 2011, 46(10): 160-170.
[9] Feng Y, Shao D, Zhao D Q, et al. Comparative evaluation of Trichoderma cellulases adsorption on lignocellulose and holocellulose from steampretreated Lespedeza crytobotrya stalk[J]. Journal of Biobased Materials and Bioenergy, 2014, 8(1): 43-49.
[10] Chen Y, Huang J, Li Y, et al. Study of the rice straw biodegradation in mixed culture of Trichoderma viride and Aspergillus niger by GCMS and FTIR[J]. Environmental Science and Pollution Research, 2015: 1-9. doi: 10.1007/s11356-015-4149-8. (Published online)
[11] Iqtedar M, Nadeem M, Naeem H, et al. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum[J]. Natural Product Research, 2014: 1-8. doi: 10.1080/14786419.2014.971320. (Published online)
[12] Wang Z, Ong H X, Geng A. Cellulase production and oil palm empty fruit bunch saccharification by a new isolate of Trichoderma koningii D-64[J]. Process Biochemistry, 2012, 47(11): 1564-1571.
[13] Wang Z, Bay H, Chew K, et al. High-loading oil palm empty fruit bunch saccharification using cellulases from Trichoderma koningii MF6[J]. Process Biochemistry, 2014, 49(4): 673-680.
[14] Zhou Q, Lü X, Zhang X, et al. Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings[J]. World Journal of Microbiology and Biotechnology, 2011, 27(8): 1905-1910.
[15] Adachi D, Koda R, Hama S, et al. An integrative process model of enzymatic biodiesel production through ethanol fermentation of brown rice followed by lipase- catalyzed ethanolysis in a water- containing system[J]. Enzyme and Microbial Technology, 2013, 52(2): 118-122.
[16] Acourene S, Ammouche A. Optimization of ethanol, citric acid, and α- amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(5): 759-766.
[17] Hagman A, Piškur J. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast[J]. PloS One, 2015, 10(1): e0116942.
[18] Nwobi A, Cybulska I, Tesfai W, et al. Simultaneous saccharification and fermentation of solid household waste following mild pretreatment using a mix of hydrolytic enzymes in combination with Saccharomyces cerevisiae[J]. Applied Microbiology and Bbiotechnology, 2014, 99(2): 929-38.
[19] Wang Y J, Yan L, Wang W D, et al. Effect of microbiological inocula on composting of cow manure[J]. Journal of Pure and Applied Microbiology, 2014, 8(3): 1867-1873.
[20] 中华人民共和国农业部. NY 609—2002有机物料腐熟剂[S]. 北京: 中国标准出版社, 2002. Ministry of Agriculture of the People's Republic of China. NY 609- 2002 organic matter- decomposing inoculants[S]. Beijing: Standards Press of China, 2002.
[21] 吕志伟. 木质纤维素降解菌群的酶学特性及应用研究[D]. 北京: 中国农业大学博士学位论文, 2009. Lü Zhiwei. Enzymology and application research of lignocellulosedegrading microbial community[D]. Beijing: China Agriculture University Academic Dissertation, 2009.
[22] Nikzade V, Tehrani M M, Saadatmand-Tarzjan M. Optimization of low- cholesterol low- fat mayonnaise formulation: Effect of using soy milk and some stabilizer by a mixture design approach[J]. Food Hydrocolloids, 2012, 28(2): 344-352.
[23] Pauli E D, Malta G B, Sanchez P M, et al. Mixture design analysis of solvent extractor effects on epicatechin, epigallocatechin gallate, epigallocatechin and antioxidant activities of the Camellia sinensis L. leaves[J]. Analytical Chemistry Research, 2014, 11(2): 23-29.
[24] Jeirani Z, Jan B M, Ali B S, et al. The optimal mixture design of experiments: Alternative method in optimizing the aqueous phase composition of a microemulsion[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 112(3): 1-7.
[25] Chen F, Liu S S, Duan X T, et al. Predicting the mixture effects of three pesticides by integrating molecular simulation with concentration addition modeling[J]. RSC Advances, 2014, 61(4): 32256-32262.
[26] Kurnia Y F, Yasni S, Nurtama B. Optimation formula of goat milk yoghurt and white oyster mushroom powder with mixture design methods[J]. Pakistan Journal of Nutrition, 2014, 13(5): 296-302.
[27] El-Dahmy R M, Elsayed I, Elshafeey A H, et al. Optimization of long circulating mixed polymeric micelles containing vinpocetine using simple lattice mixture design, in vitro and in vivo characterization[J]. International Journal of Pharmaceutics, 2014, 477(1): 39-46.
[28] 林艳梅, 生吉萍, 申琳, 等. 适冷纤维素降解微生物研究进展[J].生物技术, 2010, 20(2): 95-98. Lin Yanmei, Sheng Jiping, Shen Lin, et al. Trends in cold-adapted and cellulose- degrading microorganisms[J]. Biotechnology, 2010, 20 (2): 95-98.
[29] Sánchez C. Lignocellulosic residues: Biodegradation and bioconversion by fungi[J]. Biotechnology Advances, 2009, 27(2): 185-194.