研究论文

一种新型高强高韧TC27钛合金的高温变形行为

  • 张业勤 ,
  • 谷志飞 ,
  • 沙爱学 ,
  • 黄利军 ,
  • 鲁世强
展开
  • 1. 北京航空材料研究院, 北京 100095;
    2. 内蒙古第一机械集团公司, 包头 014030;
    3. 南昌航空大学材料科学与工程学院, 南昌 330063
张业勤,工程师,研究方向为高强钛合金,电子信箱:zyqdyx520@sohu.com

收稿日期: 2014-07-24

  修回日期: 2014-08-04

  网络出版日期: 2014-08-27

High Temperature Deformation Behavior of a High Strength and High Toughness TC27 Titanium Alloy

  • ZHANG Yeqin ,
  • GU Zhifei ,
  • SHA Aixue ,
  • HUANG Lijun ,
  • LU Shiqiang
Expand
  • 1. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    2. Inner Mongolia First Machinery Group Gorporation, Baotou 014030, China;
    3. School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China

Received date: 2014-07-24

  Revised date: 2014-08-04

  Online published: 2014-08-27

摘要

采用Gleeble 3500 热模拟机对一种新型高强高韧TC27 钛合金进行等温恒应变速率压缩实验,开展TC27 钛合金的高温变形行为研究,为制定TC27 钛合金的热加工工艺提供依据。研究结果表明,TC27 钛合金应力应变曲线在变形温度较低时大致呈应变软化型;而在变形温度较高且应变速率较低时,应力应变关系曲线基本为稳态流动型。在应变速率为70 s-1时,呈现较大幅的震荡现象。TC27 钛合金的流动应力对变形温度的敏感性在低温变形时要显著大于在高温变形时的;对应变速率的敏感程度随变形温度的升高而降低。利用实验数据对TC27 钛合金分别在700~850℃和850~1150℃温度段建立了本构方程,并具有较高的精度。通过高温变形微观组织观察,发现在变形温度高于β转变温度变形时,随变形温度提高,或应变速率降低,动态再结晶数量增加。

本文引用格式

张业勤 , 谷志飞 , 沙爱学 , 黄利军 , 鲁世强 . 一种新型高强高韧TC27钛合金的高温变形行为[J]. 科技导报, 2014 , 32(24) : 25 -30 . DOI: 10.3981/j.issn.1000-7857.2014.24.002

Abstract

The high temperature deformation behavior of TC27 titanium alloy with high strength and high toughness was studied through isothermal constant strain-rate compression experiments using a Gleeble 3500 thermo-mechanical simulator, which might provide reference for thermal processing of TC27 titanium alloy. The results show that the stress-strain curves of TC27 titanium alloy at low temperature and high temperature roughly corresponded to the softening type and steady-state-flow type, respectively, and significant shock decline was observed when the strain rate was 70 s-1. The dependence of temperature on flow stress at low temperature was much more significant than that at high temperature, and the dependence of strain rate decreased when the temperature was increased. Based on experimental data, two high precision constitutive equations of TC27 titanium alloy were established for temperature ranges of 700-850℃ and 850-1150℃. Observation on the microstructure shows that the amount of dynamic recrystallized grains increased with the rise of temperature or the decrease of strain rate when the temperature was higher than β transition temperature.

参考文献

[1] 王震, 洪权, 赵永庆. 钛合金热变形行为研究[J]. 钛工业进展, 2010, 27(3): 13-16. Wang Zhen, Hong Quan, Zhao Yongqing. Hot deformation behavior of titanium alloys[J]. Titanium Industry Progress, 2010, 27(3): 13-16.
[2] Niu Y, Hou H L, Li M Q, et al. High temperature deformation behavior of a near alpha Ti600 titanium alloy[J]. Materials Science and Engineering A, 2008, 492: 24-28.
[3] 汪发春, 沈健, 赵云豪. TB2钛合金热压缩变形流变应力[J]. 稀有金 属, 2007, 12(6): 732-735. Wang Fachun, Shen Jian, Zhao Yunhao. Flow stress behavior of TB2 titanium alloy during hot compression[J]. Chinese Journal of Rare Metals, 2007, 12(6): 732-735.
[4] 王克鲁, 鲁世强, 李鑫, 等. 变形温度对TC11合金流动应力及组织的 影响[J]. 特种铸造及有色合金, 2008, 28(3): 165-167. Wang Kelu, Lu Shiqiang, Li Xin, et al. Effects of temperature on flow stress and microstructure of TC11 alloy at high strain rate[J]. Special Casting and Nonferrous Alloys, 2008, 28(3): 165-167.
[5] 王克鲁, 鲁世强, 康永林, 等. Ti3Al基合金的热变形行为及加工图[J]. 稀有金属材料与工程, 2011, 40(9): 1534-1538. Wang Kelu, Lu Shiqiang, Kang Yonglin, et al. Deformation behavior and processing map of Ti3Al based alloy during the isothermal compression[J]. Rare Metal Materials and Engineering, 2011, 40(9): 1534-1538.
[6] 许国栋. TA15钛合金的热压缩变形性能[J]. 金属学报, 2002, 38(S1): 230-232. Xu Guodong. Hot compressive characters of TA15 titanium alloy[J]. Acta Metallurgica Sinica, 2002, 38(S1): 230-232.
[7] 徐文臣, 单德彬, 李春峰, 等. TA15钛合金的动态热压缩行为及其机 理研究[J]. 航空材料学报, 2005, 25(4): 10-16. Xu Wenchen, Shan Debin, Li Chunfeng, et al. Study on the dynamic hot compression behavior and deform ation mechanism of TA15 titanium alloy[J]. Journal of Aeronautical Materials, 2005, 25(4): 10-16.
[8] 李淼泉, 李晓丽, 龙丽, 等. TA15合金的热变形行为及加工图[J]. 稀有 金属材料与工程, 2006, 35(9): 1354-1358. Li Miaoquan, Li Xiaoli, Long Li, et al. Deformation behavior and processing map of high temperature deformation of TA15 Alloy[J]. Rare Metal Materials and Engineering, 2006, 35(9): 1354-1358.
[9] 王永, 尹建明, 卢斌, 等. (α2+O+B2)三相Ti3Al基合金的热变形行为[J]. 中国有色金属学报, 2010, 20(1): s293-297. Wang Yong, Yin Jianming, Lu Bin, et al. Hot deformation behaviour of (α2+O +B2) three phases Ti3Al-based alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): s293-297.
[10] Homfan U, Blum W. Micro Structural evolution during high temperature deformation of Lamellar Ti48Al-2Nb-2Cr[J]. Intermetallics, 1999(7): 351-361.
[11] 朱知寿, 王新南, 顾伟, 等. TC21钛合金高温热变形行为研究[J]. 中 国材料进展, 2009, 28(2): 51-55. Zhu Zhishou, Wang Xinnan, Gu Wei, et al. Study on high temperature deformation behaviors of new type TC21 titanium alloy[J]. Materials China, 2009, 28(2): 51-55.
[12] 沙爱学, 李兴无, 王庆如, 等. 热变形温度对TC18钛合金显微组织和 力学性能的影响[J]. 中国有色金属学报, 2005, 15(8): 1167-1171. Sha Aixue, Li Xingwu, Wang Qingru, et al. Influence of hot deformation temperature on microstructure and mechanical properties of TC18 alloy[J]. Chinese Journal of Nonferrous Metals, 2005, 15(8): 1167-1171.
文章导航

/