专题论文

行星盐类研究的重要性

  • 孔维刚 ,
  • 郑绵平
展开
  • 中国地质科学院矿产资源研究所, 国土资源部盐湖资源与环境重点实验室, 北京 100037
孔维刚,助理研究员,研究方向为行星盐类矿物学及光谱性质,电子信箱:kwg@cags.ac.cn

收稿日期: 2014-09-16

  修回日期: 2014-11-05

  网络出版日期: 2014-12-25

基金资助

国家自然科学基金项目(41303049);中国地质调查局地质调查项目(1212011085517)

Importance of Salt Studies in Planetary Science

  • KONG Weigang ,
  • ZHENG Mianping
Expand
  • MLR Key Laboratory of Saline Lake Resources and Environments; Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

Received date: 2014-09-16

  Revised date: 2014-11-05

  Online published: 2014-12-25

摘要

人类已在火星、木卫二及土卫二上发现了大量盐类矿物,木卫三、木卫四也可能有盐类存在,可见盐类在行星普遍存在.盐类研究对于行星科学具有重要意义.首先,盐类光谱研究直接帮助研究者对探测数据进行解译,确定盐类矿物种类,在探测数据不明确的情况下,盐类稳定性质等还可以帮助限定盐类矿物在探测区域出现的可能性;其次,盐类矿物是行星多层圈相互作用的产物,对行星盐类的研究可以获取行星相关过程中的地质历史信息,根据所研究盐类起源的不同,盐类研究有助于理解行星内部的演化、表面水溶液环境、大气成分和结构;此外,盐类起源是生命起源的基础,行星盐类研究是地外生命探索的关键步骤之一.本文综述2008 年至今开展的火星盐类类比研究进展.

本文引用格式

孔维刚 , 郑绵平 . 行星盐类研究的重要性[J]. 科技导报, 2014 , 32(35) : 15 -21 . DOI: 10.3981/j.issn.1000-7857.2014.35.001

Abstract

Salts were found on Mars, Europa, and Enceladus, and were indicated to exist on Ganymede, Callisto, thus the salts might be common on planetary bodies. Salt studies are, therefore, important for the planetary science. First, the spectroscopic studies of salts serve references for the phase identifications by the analysis of the mission data, and the stability properties of salts can help identify the possible salt phases when the mission data do not give clear indications. Second, salts are the products of interaction between spheres of a planet, thus studies of planetary salts can provide rich information on the geological history of a planet. On the basis of their different origins, salt studies can help understanding the planetary interior, the surface aqueous processes, and the atmosphere. In addition, the origin of salts is the foundation for life occurrence, thus the planetary salt studies are one of the key steps for searching extraterrestrial life. Since 2008, Chinese scientists have carried out analogue studies on Martian salts, thus in this paper, we make a brief review of the analogue studies in the world.

参考文献

[1] Zheng M P. On salinology[J]. Hydrobiologia, 2001, 466(1-3): 339-347.
[2] 郑绵平. 盐湖学的研究与展望[J]. 地质论评, 2006, 52(6): 737-746. Zheng Mianping, Salinology: Research and prospects[J]. Geological Review, 2006, 52(6): 737-746.
[3] 郑绵平. 盐类科学研究的扩展——盐体系研究的思考(代序)[J]. 地质 学报, 2007, 81(12) 1603-1607. Zheng Mianping. Expansion of Salt Science-Thoughts on saline systems research (in lieu of preface) [J]. Acta Geologica Sinica, 2007, 81(12): 1603-1607.
[4] 郑绵平. 盐类科学研究的扩展[J]. 科技导报, 2013, 31(4): 8. Zheng Mianping. Expansion of salt science[J]. Science & Technology Review, 2013, 31(4): 8.
[5] Zheng M P, Kong W G, Zhang X F, et al. A comparative analysis of evaporate sediments on Earth and Mars: Implications for the climate change on Mars[J]. Acta Geologica Sinica, 2013, 87(3): 885-897.
[6] Ley W, Vonbraun W. The exploration of Mars[M]. New York: Viking Press, 1956.
[7] Bibring J P, Langevin Y, Gendrin A, et al. Mars surface diversity as revealed by the OMEGA/Mars express observations[J]. Science, 2005, 307(5715): 1576-1581.
[8] McCord T B, Hansen G B, Fanale F P, et al. Salts on Europa's surface detected by Galileo's Near Infrared Mapping Spectrometer [J]. Science, 1998, 280(5367): 1242-1245.
[9] Postberg F, Kempf S, Schmidt J, et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus[J]. Nature, 2009, 459 (7250): 1098-1101.
[10] Khurana K K, Kivelson M G, Stevenson D J, et al. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto[J]. Nature, 1998, 395(6704): 777-780.
[11] Kivelson M G, Khurana K K, Stevenson D J, et al. Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment
[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A3): 4609-4625.
[12] Kivelson M G, Khurana K K, Russell C T, et al. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa[J]. Science, 2000, 289(5483): 1340-1343.
[13] Kivelson M G, Khurana K K, and Volwerk M. The permanent and inductive magnetic moments of ganymede[J]. Icarus, 2002, 157(2): 507- 522.
[14] Langevin Y, Poulet F, Bibring J P, et al. Sulfates in the north polar region of Mars detected by OMEGA/Mars Express[J]. Science, 2005, 307 (5715): 1584-1586.
[15] Gendrin A, Mangold N, Bibring J P, et al. Sulfates in Martian layered terrains: The OMEGA/Mars Express view[J]. Science, 2005, 307(5715): 1587-1591.
[16] Osterloo M M, Hamilton V E, Bandfield J L, et al. Chloride-bearing materials in the southern highlands of Mars[J]. Science, 2008, 319 (5870): 1651-1654.
[17] Osterloo M M, Anderson F S, Hamilton V E, et al. Geologic context of proposed chloride-bearing materials on Mars[J]. Journal of Geophysical Research, 2010, 115: E10012.
[18] Hecht M H, Kounaves S P, Quinn R C, et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site[J]. Science, 2009, 325(5936): 64-67.
[19] Chevrier V F, and Rivera-Valentin E G. Formation of recurring slope lineae by liquid brines on present-day Mars[J]. Geophysical Research Letters, 2012, 39: L21202.
[20] Greeley R, Chyba C F, Head III J W, et al. Geology of Europa[M]// Bagenal F, Dowling T E, Mckinnon W B. Jupiter: The Planet, Satellites, and Magnetosphere. Cambridge: Cambridge University Press, 2007: 329-363.
[21] McCord T B, Hansen G B, Matson D L, et al. Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation[J]. Journal of Geophysical Research: Planets, 1999, 104(E5): 11827-11851.
[22] McCord T B, Orlando T M, Teeter G, et al. Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions[J]. Journal of Geophysical Research: Planets, 2001, 106(E2): 3311-3319.
[23] Schubert G, Anderson J D, Travis B J, et al. Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating
[J]. Icarus, 2007, 188(2): 345-355.
[24] Kempf S, Beckmann U, Moragas-Klostermeyer G, et al. The E ring in the vicinity of Enceladus: I. Spatial distribution and properties of the ring particles[J]. Icarus, 2008, 193(2): 420-437.
[25] Schmidt J, Brilliantov N, Spahn F, et al. Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures[J]. Nature, 451(7179): 685-688.
[26] Postberg F, Schmidt J, Hillier J, et al. A salt- water reservoir as the source of a compositionally stratified plume on Enceladus[J]. Nature, 2011, 474(7353): 620-622.
[27] Kempf S, Beckmann U, Schmidt J. How the Enceladus dust plume feeds Saturn’s Ering [J]. Icarus, 206(2): 446-457.
[28] Lichtenberg K A, Arvidson R E, Morris R V, et al. Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars[J]. Journal of Geophysical Research: Planets, 2010, 115: E00D17.
[29] Arvidson R E, Poulet F, Bibring J- P, et al. Spectral reflectance and morphologic correlations in Eastern Terra Meridiani, Mars[J]. Science, 2005, 307(5715): 1591-1594.
[30] Ehlmann B L, Mustard J F, Murchie S L, et al. Orbital identification of carbonate-bearing rocks on Mars [J]. Science, 2008, 322(5909): 1828- 1832.
[31] Klingelhöfer G, Morris R V, Bernhardt B, et al. Jarosite and hematite at meridiani planum from opportunity's mössbauer spectrometer[J]. Science, 2004, 306(5702): 1740-1745.
[32] Kong W G, Wang A, Freeman J J, et al. A comprehensive spectroscopic study of synthetic Fe2+ , Fe3+ , Mg2+ and Al3+ copiapite by Raman, XRD, LIBS, MIR and vis-NIR [J]. Journal of Raman Spectroscopy, 2011, 42 (5): 1120-1129.
[33] Bishop J L, Murad E, Lane M D, et al. Multiple techniques for mineral identification on Mars: A study of hydrothermal rocks as potential analogues for astrobiology sites on Mars[J]. Icarus, 2004, 169(2): 311- 323.
[34] Zheng M P, Wang A, Kong F J, et al. Saline lakes on Qinghai-Tibet Plateau and salts on Mars[C]. Lunar and Planetary Science Conference XL, Houston, USA: LPI, 2009: 1454.
[35] Chou I M, Seal R R. Magnesium and calcium sulfate stabilities and the water budget of Mars[J]. Journal of Geophysical Research: Planets, 2007, 112: E11004.
[36] Wang A, Freeman J J, Jolliff B L. Phase transition pathways of the hydrates of magnesium sulfate in the temperature range 50℃ to 5℃: Implication for sulfates on Mars[J]. Journal of Geophysical Research: Planets, 2009, 114: E04010.
[37] Kong W G, Wang A, and Chou I M. Experimental determination of the phase boundary between kornelite and pentahydrated ferric sulfate at 0.1MPa [J]. Chemical Geology, 2011, 284(3): 333-338.
[38] Zolotov M Y, and Shock E L. Composition and stability of salts on the surface of Europa and their oceanic origin[J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32815–32827.
[39] 刘喜方, 郑绵平. 西藏聂尔错镁硼矿地质特征及成矿机制[J]. 地质学 报, 2010, 84(11): 1601-1612. Liu Xifang, Zheng Mianping. Geological features and metallogenicmechanism of the Nier Co magnesium borate deposit, Tibet [J]. ActaGeologicaSinica, 2010, 84(11):1601-1612.
[40] Böhlke J K, Ericksen G E, Revesz K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, U.S.A[J]. Chemical Geology, 1997, 136: 135-152.
[41] Michalski G, Böhlke J K, Thiemens M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: New evidence from mass-independent oxygen isotopic compositions[J]. Geochimicaet Cosmochimica Acta, 2004, 68: 4023-4038.
[42] 郑绵平, 赵元艺, 刘俊英. 第四纪盐湖沉积与古气候[J]. 第四纪研究, 1998(4): 297-307. Zheng Mianping, Zhao Yuanyi, Liu Junying. Quaternary saline lake deposition and palaeoclimate[J]. Quaternary Research, 1998(4): 297- 307.
[43] Zheng M P, Zhao Y Y, Liu J Y. Paleoclimatic indicators of China's Quaternary Saline Lake sediments and Hydrochemistry[J]. Acta Geologica Sinica, 2000, 74(2): 259-265.
[44] Murchie S L, Mustard J F, Ehlmann B L, et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter [J]. Journal of Geophysical Research: Planets, 2009, 114: E00D06.
[45] Kong W G, Zheng M P, Kong F J, et al. Sulfate-bearing deposits at Dalangtan Playa and their implication for the formation and preservation of Martian salts[J]. American Mineralogist, 2014, 99(2/3): 283-290.
[46] Catling D C, Claire M W, Zahnle K J, et al. Atmospheric origins of perchlorate on Mars and in the Atacama[J]. Journal of Geophysical Research: Planets, 2010, 115: E00E11.
[47] Zahnle K, Haberle R M, Catling D C, et al. Photochemical instability of the ancient Martian atmosphere[J]. Journal of Geophysical Research: Planets, 2008, 113: E11004.
[48] Scambelluri M, Philippot P. Deep fluids in subduction zones[J]. Lithos, 2001, 55(1): 213-227.
[49] Bodnar R J. Fluids in planetary systems[J]. Elements, 2005, 1(1): 9-12.
[50] Kesler S E. Ore-forming fluids [J]. Elements, 2005, 1(1): 13-18.
[51] Valenti P, Bodnar R J, Schmidt C. Experimental determination of H2O– NaCl liquidi to 25 mass% NaCl and 1.4 GPa: Application to the Jovian satellite Europa[J]. Geochimica Et Cosmochimica Acta, 2012, 92: 117- 128.
[52] Joliff B L, Wieczorek M A, Shearer C K, et al. New Views of the Moon: Reviews in Mineralogy and Geochemistry, Vol. 60[M]. Chantilly, Virginia: The Mineralogical Society of America, 2006.
[53] Tosca N J, McLennan S M, Clark B C, et al. Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum[J]. Earth and Planetary Science Letters, 2005, 240(1): 122-148.
[54] Bao H, Campbell D A, Bockheim J G, et al. Origins of sulphate in Antarctic dry-valley soils as deduced from anomalous 17O compositions
[J]. Nature, 2000, 407(6803): 499-502.
[55] Bishop J L, Lougear A, Newton J, et al. Mineralogical and geochemical analyses of Antarctic lake sediments: A study of reflectance and Mössbauer spectroscopy and C, N, and S isotopes with applications for remote sensing on Mars[J]. Geochimicaet Cosmochimica Acta, 2001, 65 (17): 2875-2897.
[56] Doran P T, Wharton R A, Des Marais D J, et al. Antarctic paleolake sediments and the search for extinct life on Mars [J]. Journal of Geophysical Research: Planets, 1998, 103(E12): 28481-28493.
[57] Gibson E K, Wentworth S J, and McKay D S. Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: An analog of Martian weathering processes[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(S2): A912-A928.
[58] Edwards H G M, Moody C D, Jorge Villar S E. et al. Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: Evaluation for Mars Lander missions [J]. Icarus, 2005, 174(2): 560-571.
[59] Wentworth S J, Gibson E K, Velbel M A, et al. Antarctic Dry Valleys and indigenous weathering in Mars meteorites: Implications for water and life on Mars [J]. Icarus, 2005, 174(2): 383-395.
[60] Marchant D R, and Head III J W. Antarctic dry valleys: Microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars [J]. Icarus, 2007, 192(1): 187-222.
[61] Catling D C, Claire M W, Zahnle K J. et al. Atmospheric origins of perchlorate on Mars and in the Atacama[J]. Journal of Geophysical Research: Planets, 2010, 115: E00E11.
[62] McKay C P, Friedmann I, Go′ mez- Silva B. et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: Four years of observation including the El Niño of 1997-1998[J]. Astrobiology, 2003, 3(2): 393-406.
[63] Wierzchos J, Ascaso C, McKay C P. Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology, 2006, 6(3): 415-422.
[64] Quinn R C, Zent A P, Grunthaner F J. et al. Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument [J]. Planetary and Space Science, 2005, 53(13): 1376-1388.
[65] Mann G A, Clarke J D A, Gostin V A. Surveying for Mars analogue research sites in the central australian deserts[J]. Australian Geographical Studies, 2004, 42(1): 116-124.
[66] West M D, Clarke J D A, Thomas M. et al. The geology of Australian Mars analogue sites[J]. Planetary and Space Science, 2010, 58(4): 447- 458.
[67] Benison K C. A Martian analog in Kansas: Comparing Martian strata with Permian acid saline lake deposits[J]. Geology, 2006, 34(5): 385- 388.
[68] Chan M A, Beitler B, Parry W T, et al. A possible terrestrial analogue for haematite concretions on Mars[J]. Nature, 2004, 429(6993): 731-734.
[69] Fernández-Remolar D C, Morris R V, Gruener J E, et al. The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at MeridianiPlanum, Mars [J]. Earth and Planetary Science Letters, 2005, 240(1): 149-167.
[70] Léveillé R. A half-century of terrestrial analog studies: From craters on the Moon to searching for life on Mars [J]. Planetary and Space Science, 2010, 58(4): 631-638.
[71] Preston L J, Dartnell L R. Planetary habitability: lessons learned from terrestrial analogues[J]. International Journal of Astrobiology, 13(1): 81- 98.
[72] Kong F J, Kong W G, Hu B. et al. Meteorological data, surface temperature and moisture conditions at the Dalangtan Mars analogous site, in Qinghai-Tibet Plateau, China[C]//Lunar and Planetary Science Conference XLIV. Houston: LPI, 2013:1336.
[73] Kong W G, Zheng M P, Kong F J. Brine Evolution in Qaidam Basin, Northern Tibetan Plateau, and the Formation of Playas as Mars Analogue Site [C]//Lunar and Planetary Science Conference XLV, Houston, USA: LPI, 2014: 1228.
[74] 孔凡晶, 马妮娜, Wang A, 等. 大浪滩盐湖蒸发盐嗜盐菌培养鉴定及 其天体生物学意义[J]. 地质学报, 84(11): 1661-1667. Kong Fanjing, Ma Nina, Wang A, et al. Isolation and Identification of Halophiles from Evaporates in Dalangtan Salt Lake[J]. Acta Geologica Sinica, 2007, 84(11): 1661-1667.
[75] Mayer D P, Arvidson R E, Wang A. et al. Mapping minerals at a potential mars analog site on the Tibetan plateau[C]//Lunar and Planetary Science Conference XL, Houston: LPI, 2009: 1877.
[76] Sobron P, Freeman J J, Wang A. Field test of the water-wheel IR (WIR) spectrometer on evaporative salt deposits at Tibetan plateau[C]//Lunar and Planetary Science Conference XL. Houston: LPI, 2009: 2372.
文章导航

/