专题论文

无人机集群对抗技术新进展

  • 罗德林 ,
  • 徐扬 ,
  • 张金鹏
展开
  • 1. 厦门大学航空航天学院, 厦门 361005;
    2. 中国空空导弹研究院, 洛阳 471009
罗德林,副教授,研究方向为飞行器制导与控制、无人机指挥控制,电子信箱:luodelin1204@xmu.edu.cn

收稿日期: 2016-12-12

  修回日期: 2017-03-02

  网络出版日期: 2017-04-18

基金资助

国家自然科学基金项目(61673327);2016年度航空科学基金项目(20160168001)

New progresses on UAV swarm confrontation

  • LUO Delin ,
  • XU Yang ,
  • ZHANG Jinpeng
Expand
  • 1. School of Aerospace Engineering, Xiamen University, Xiamen 361005, China;
    2. China Airborne Missile Academy, Luoyang 471009, China

Received date: 2016-12-12

  Revised date: 2017-03-02

  Online published: 2017-04-18

摘要

无人机集群对抗是未来无人机作战的重要模式,它是一群无人机对另一群无人机进行拦截而形成的空中协作式的缠斗,对抗中无人机具有自组织、自适应特点和拟人思维属性,通过感知环境,对周围态势进行判断,依据一定的行为规则,采取攻击、避让、分散、集中、协作、援助等有利策略,使得在整体上涌现出集群对抗系统的动态特性。本文对近年来无人机集群对抗的研究进展进行综述,分析总结相关的关键技术,对研究思路和方法进行深入探讨,以期为从事无人机集群对抗建模研究提供参考。

本文引用格式

罗德林 , 徐扬 , 张金鹏 . 无人机集群对抗技术新进展[J]. 科技导报, 2017 , 35(7) : 26 -31 . DOI: 10.3981/j.issn.1000-7857.2017.07.002

Abstract

Unmanned aerial vehicle (UAV) swarm confrontation will be an important combat mode for UAVs in the future. It is coordinated airborne dogfight between two adversary UAV swarms when one side attempts to intercept the other. UAVs in the conflict have the abilities of self-organization and self-adaption and the property of human-like thinking. By sensing environment, UAVs can evaluate their surrounding situation and take actions to their advantages, like target attack, evasion, separation, concentration, coordination, fire support, etc. according to their behavior regularities. The interaction process between UAVs and environments, as a whole, exhibites nonlinear dynamic characteristics UAV swarm confrontation is a nonlinear dynamic complex system and also is an emerging research field, therefore, it has received extensive attention. This paper reviews the recent research advances on UAV swarm confrontation, analyzes and summarizes its key techniques as well as discusses related study thoughts and approaches. The paper is also expected to be a reference to the research of modeling of UAV swarm confrontation.

参考文献

[1] 沈林成, 牛轶峰, 朱华勇. 多无人机自主协同控制理论与方法[M]. 北京: 国防工业出版社, 2013: 5-9. Shen Lincheng, Niu Yifeng, Zhu Huayong. Theories and methods of autonomous cooperative control for multiple UAVs[M]. Beijing: National Defense Industry Press, 2013: 5-9.
[2] 周绍磊, 康宇航, 万兵, 等. 多无人机协同编队控制的研究现状与发展前景[J]. 飞航导弹, 2016(1): 78-83. Zhou Shaolei, Kang Yuhang, Wan Bing, et al. Research status and development prospect of multi UAV cooperative formation control[J]. Aerodynamic Missile Journal, 2016(1): 78-83.
[3] 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37-43. Niu Yifeng, Xiao Xiangjiang, Ke Guanyan. operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defence science and technology, 2013, 34(5): 37-43.
[4] 宋怡然, 申超, 李东兵. 美国分布式低成本无人机集群研究进展[J]. 飞航导弹, 2016(8): 17-22. Song Yiran, Shen Chao, Li Dongbing. Research progress of distributed low cost unmanned aerial vehicle cluster in USA[J]. Aerodynamic Missile Journal, 2016(8): 17-22.
[5] Augugliaro F. The Flight assembled architecture installation[J]. IEEE Control Systems, 2014, 34(4): 46-64.
[6] 周欢, 赵辉, 韩统, 等. 基于规则的无人机集群飞行与规避协同控制[J]. 系统工程与电子技术, 2016, 38(6): 1375-1382. Zhou Huan, Zhao Hui, Han Tong, et al. Cooperative flight and evasion control of UAV swarm based rule[J]. Systems Engineering and Electronics, 2016, 38(6): 1375-1382.
[7] 陈军, 高晓光. 机群协同空战中的指控系统建模与分析[J]. 计算机工程与应用, 2009, 45(10): 195-198. Chen Jun, Gao Xiaoguang. Modeling and analysis of command and control system in cooperative air combat[J]. Computer Engineering and Applications, 2009, 45 (10): 195-198.
[8] Gaertner U. UAV Swarm Tactics: An agent-based simulation and Markov process analysis[D]. Monterey: Naval Postgraduate School, 2013.
[9] Xie R Z, Li J Y, Luo D L. Research on maneuvering decisions for multi-UAVs Air combat[C]//IEEE International Conference on Control & Automation. New York: IEEE, 2014: 767-772.
[10] 罗德林, 张海洋, 谢荣增, 等. 基于多agent系统的大规模无人机集群对抗[J]. 控制理论与应用, 2015, 32(11): 1498-1504. Luo Delin, Zhang Haiyang, Xie Rongzeng, et al. Unmanned aerial vehicles swarm conflict based on multi-agent system[J]. Control Theory and Applications, 2015, 32(11): 1498-1504.
[11] Duan H B, Li P, Yu Y X. A predator-prey particle swarm optimization approach to multiple UCAV air combat modeled by dynamic game theory[J]. IEEE/CAA Journal of Automation, 2015, 2(1): 11-18.
[12] 孙强, 梁晓龙, 尹忠海, 等. UAV集群自组织飞行建模与控制策略研究[J]. 系统工程与电子技术, 2016, 38(7): 1649-1653. Sun Qiang, Liang Xiaolong, Yin Zhonghai, et al.UAV swarm self-organized flight modeling and control strategy[J]. Systems Engineering and Electronics, 2016, 38(7): 1649-1653.
[13] 陈侠, 赵明明, 徐光延. 基于模糊动态博弈的多无人机空战策略研究[J]. 电光与控制, 2014(6): 19-23. Chen Xia, Zhao Mingming, Xu Guangyan. Fuzzy dynamic game based operation strategy[J]. Electronics Optics and Control, 2014(6): 19-23.
[14] Ilachinski A. Artificial war: Multiagent-based simulation of combat[M]. New Jersey: World Scientific Press, 2004.
[15] 刘金星. 空战指挥控制的自主决策思维属性[J]. 电光与控制, 2010, 17(6): 1-4. Liu Jinxing. Mental attributes of autonomous decision-making in air combat command and control[J]. Electronics Optics and Control, 2010, 17(6): 1-4.
文章导航

/