专题论文

基于脑电的无创脑机接口研究进展

  • 陈小刚 ,
  • 王毅军
展开
  • 1. 中国医学科学院北京协和医学院生物医学工程研究所, 天津 300192;
    2. 中国科学院半导体研究所, 北京 100083
陈小刚,助理研究员,研究方向为脑机接口,电子信箱:chenxg@bme.cams.cn

收稿日期: 2018-05-01

  修回日期: 2018-05-22

  网络出版日期: 2018-06-21

基金资助

国家自然科学基金项目(61431007,61671424,61603416)

A review of non-invasive electroencephalogram-based brain computer interfaces

  • CHEN Xiaogang ,
  • WANG Yijun
Expand
  • 1. Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China;
    2. Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Received date: 2018-05-01

  Revised date: 2018-05-22

  Online published: 2018-06-21

摘要

脑机接口在脑与外部环境之间建立一种全新的不依赖于外周神经和肌肉的交流与控制通道,从而实现脑与外部设备的直接交互。脑电因具有非侵入式、易于使用及设备价格低廉等特点而被广泛应用于脑机接口。本文回顾了基于脑电的无创脑机接口的研究历史,从脑机接口的类型、应用及面临的挑战3个方面综述了脑机接口的研究现状,并展望了脑机接口的未来发展前景。

关键词: 脑机接口; 脑电; 无创

本文引用格式

陈小刚 , 王毅军 . 基于脑电的无创脑机接口研究进展[J]. 科技导报, 2018 , 36(12) : 22 -30 . DOI: 10.3981/j.issn.1000-7857.2018.12.004

Abstract

The brain computer interface(BCI) is a new communication and control channel between the brain and the external world that does not depend on the peripheral nerves and muscles, with a direct interaction between the brain and the external devices. Due to the advantages such as the noninvasiveness, the ease-of-use, and the low cost, the electroencephalogram(EEG) is the most popular method for current BCIs. This paper first reviews the history of the EEG-based non-invasive BCIs. Then, the focus is placed on the state-of-art of researches in three main aspects, namely the taxonomy of the current BCIs, the applications of the BCIs, and the challenges in developing the BCIs. Finally, a summary of future developments of the EEG-based BCI technology is given.

参考文献

[1] Vidal J J. Toward direct brain-computer communication[J]. An-nual Review of Biophysics and Bioengineering, 1973, 2(1):157-180.
[2] Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain comput-er interfaces for communication and control[J]. Clinical Neuro-physiology, 2002, 113(6):767-791.
[3] Lebedev M A, Nicolelis M A. Brain-machine interfaces:From basic science to neuroprostheses and neurorehabilitation[J]. Physiological Reviews, 2017, 97(2):767-837.
[4] Vidal J J. Real-time detection of brain events in EEG[J]. Pro-ceedings of the IEEE, 1977, 65(5):633-664.
[5] Farwell L A, Donchin E. Talking off the top of your head:To-ward a mental prosthesis utilizing event-related brain potentials[J]. Electroencephalography & Clinical Neurophysiology, 1988, 70(6):510-523.
[6] Wolpaw J R, McFarland D J, Neat G W, et al. An EEG-based brain-computer interface for cursor control[J]. Electroencepha-lography & Clinical Neurophysiology, 1991, 78(3):252-259.
[7] Pfurtscheller G, Flotzinger D, Kalcher J. Brain-computer inter-face:A new communication device for handicapped persons[J]. Journal of Microcomputer Applications, 1993, 16(3):293-299.
[8] Sutter E E. The brain response interface:Communication through visually-induced electrical brain responses[J]. Journal of Microcomputer Applications, 1992, 15(1):31-45.
[9] Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling de-vice for the paralyzed[J]. Nature, 1999, 398(6725):297-298.
[10] Bashashati A, Fatourechi M, Ward R K, et al. A survey of sig-nal processing algorithms in brain-computer interfaces based on electrical brain signals[J]. Journal of Neural Engineering, 2007, 4(2):R32-R57.
[11] Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(10):1181-1186.
[12] Guo F, Hong B, Gao X, et al. A brain-computer interface us-ing motion-onset visual evoked potential[J]. Journal of Neural Engineering, 2008, 5(4):477-485.
[13] Gao S, Wang Y, Gao X, et al. Visual and auditory brain-com-puter interfaces[J]. IEEE Transactions on Biomedical Engi-neering, 2014, 61(5):1436-1447.
[14] Müller-Putz G, Leeb R, Tangermann M, et al. Towards nonin-vasive hybrid brain-computer interfaces:Frame-work, prac-tice, clinical application, and beyond[J]. Proceedings of the IEEE, 2015, 103(6):926-943.
[15] Sellers E W, Donchin E. A P300-based brain-computer inter-face:Initial tests by ALS patients[J]. Clinical Neurophysiolo-gy, 2006, 117(3):538-548.
[16] Chaudhary U, Birbaumer N, Ramos-Murguialday A. Braincomputer interfaces for communication and rehabilitation[J]. Nature Reviews Neurology, 2016, 12(9):513-525.
[17] Marshall D, Coyle D, Wilson S, et al. Games, gameplay, and BCI:The state of the art[J]. IEEE Transactions on Computa-tional Intelligence and AI in Games, 2013, 5(2):82-99.
[18] Luck S J. An introduction to the event-related potential tech-nique[M]. Cambridge:MIT Press, 2005.
[19] Regan D. Human brain electrophysiology:Evoked potentials and evoked magnetic fields in science and medicine[M]. New York:Elsevier, 1989.
[20] Reza F R, Allison B Z, Christoph G, et al. P300 brain comput-er interface:Current challenges and emerging trends[J]. Fron-tiers in Neuroengineering, 2012, 5:14.
[21] Lee P L, Hsieh J C, Wu C H, et al. The brain computer inter-face using flash visual evoked potential and independent com-ponent analysis[J]. Annals of Biomedical Engineering, 2006, 34(10):1641-1654.
[22] Maye A, Zhang D, Engel A K. Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(7):1026-1036.
[23] Blankertz B, Lemm S, Treder M, et al. Single trial analysis and classification of ERP components:A tutorial[J]. Neuroim-age, 2011, 56(2):814-825.
[24] Wang Y, Gao X, Hong B, et al. Brain-computer interfaces based on visual evoked potentials-Feasibility of practical sys-tem designs[J]. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(5):64-71.
[25] Yuan H, He B. Brain-computer interfaces using sensorimotor rhythms:Current state and future perspectives[J]. IEEE Trans-actions on Biomedical Engineering, 2014, 61(5):1425-1435.
[26] McFarland D J, Sarnacki W A, Wolpaw J R. Electroencepha-lographic (EEG) control of three-dimensional movement[J]. Journal of Neural Engineering, 2010, 7(3):036007.
[27] Pfurtscheller G, Brunner C, Schlogl A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of differ-ent motor imagery tasks[J]. Neuroimage, 2006, 31(1):153-159.
[28] Li J, Wang Y, Zhang L, et al. Decoding EEG in cognitive tasks with time-frequency and connectivity masks[J]. IEEE Transactions on Cognitive and Developmental Systems, 2016, 8(4):298-308.
[29] Kai K A, Zheng Y C, Wang C, et al. Filter bank common spa-tial pattern algorithm on BCI competition IV datasets 2a and 2b[J]. Frontiers in Neuroscience, 2012, 6:39.
[30] Wang Y, Jung T P. Improving brain-computer interfaces us-ing independent component analysis[M]//Allison B, Dunne S, Leeb R, et al. Towards Practical Brain-Computer Interfaces:Bridging the Gap from Research to Real-World Applications. Heidelberg:Springer, 2013:67-83.
[31] Qin L, Ding L, He B. Motor imagery classification by means of source analysis for brain-computer interface applications[J]. Journal of Neural Engineering, 2005, 2(4):65-72.
[32] Wei Q, Wang Y, Gao X, et al. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-com-puter interface[J]. Journal of Neural Engineering, 2007, 4(2):120-129.
[33] Lin K, Cinetto A, Wang Y, et al. An online hybrid BCI sys-tem based on SSVEP and EMG[J]. Journal of Neural Engi-neering, 2016, 13(2):026020.
[34] Fazli S, Mehnert J, Steinbrink J, et al. Enhanced performance by a hybrid NIRS-EEG brain computer interface[J]. Neuroim-age, 2012, 59(1):519-529.
[35] Pfurtscheller G, Allison B Z, Brunner C, et al. The Hybrid BCI[J]. Frontiers in Neuroscience, 2010, 2(30):30.
[36] Yin E, Zhou Z, Jiang J, et al. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm[J]. Journal of Neural Engineering, 2013, 10(2):026012.
[37] Allison B Z, Brunner C, Kaiser V, et al. Toward a hybrid brain-computer interface based on imagined movement and visualattention[J]. Journal of Neural Engineering, 2010, 7(2):26007.
[38] Höhne J, Holz E, Staiger-Sälzer P, et al. Motor imagery for se-verely motor-impaired patients:Evidence for brain-computer interfacing as superior control solution[J]. PLoS One, 2014, 9(8):e104854.
[39] Müller K R, Tangermann M, Dornhege G, et al. Machine learning for real-time single-trial EEG-analysis:From braincomputer interfacing to mental state monitoring[J]. Journal of Neuroscience Methods, 2008, 167(1):82-90.
[40] Chen Z. A high-ITR SSVEP-based BCI speller[J]. BrainComputer Interfaces, 2014, 1(3/4):181-191.
[41] Chen X, Wang Y, Gao S, et al. Filter bank canonical correla-tion analysis for implementing a high-speed SSVEP-based brain-computer interface[J]. Journal of Neural Engineering, 2015, 12(4):046008.
[42] Nakanishi M, Wang Y, Wang Y T, et al. A high-speed brain speller using steady-state visual evoked potentials[J]. Interna-tional Journal of Neural Systems, 2014, 24(6):1450019.
[43] Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44):E6058-E6067.
[44] Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis[J]. IEEE Transactions on Biomedical En-gineering, 2018, 65(1):104-112.
[45] Nijboer F, Sellers E W, Mellinger J, et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis[J]. Clinical Neurophysiology, 2008, 119(8):1909-1916.
[46] Mak J N, Wolpaw J R. Clinical Applications of brain-comput-er interfaces:Current state and future prospects[J]. IEEE Re-views in Biomedical Engineering, 2009, 2(1):187-199.
[47] Sellers E W, Vaughan T M, Wolpaw J R. A brain-computer interface for long-term independent home use[J]. Amyo-trophic Lateral Sclerosis & Other Motor Neuron Disorders, 2010, 11(5):449-455.
[48] Birbaumer N, Piccione F, Silvoni S, et al. Ideomotor silence:The case of complete paralysis and brain-computer interfaces (BCI)[J]. Psychological Research, 2012, 76(2):183-191.
[49] Van Dokkum L, Ward T, Laffont I. Brain computer interfaces for neurorehabilitation-Its current status as a rehabilitation strategy post-stroke[J]. Annals of Physical and Rehabilitation Medicine, 2015, 58(1):3-8.
[50] Zander T O, Kothe C. Towards passive brain-computer inter-faces:Applying brain-computer interface technology to hu-man-machine systems in genera[J]. Journal of Neural Engi-neering, 2011, 8(2):025005.
[51] Lotte F, Congedo M, Lecuyer A, et al. A review of classifica-tion algorithms for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2007, 4(2):R1-R13.
[52] Chi Y W, Wang Y T, Wang Y, et al. Dry and non-contact EEG sensors for mobile brain-computer interfaces[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineer-ing, 2012, 20(2):228-235.
文章导航

/