综述

仿植被高光谱伪装材料技术研究进展

  • 祖梅 ,
  • 鄢峰 ,
  • 程海峰 ,
  • 刘东青 ,
  • 陈晨 ,
  • 李铭洋
展开
  • 国防科技大学空天科学学院陶瓷纤维及其复合材料重点实验室, 长沙 410073
祖梅,副研究员,研究方向为光电信息功能材料,电子信箱:zumei2003@163.com

收稿日期: 2020-11-11

  修回日期: 2021-04-21

  网络出版日期: 2021-09-07

基金资助

国防科技重点实验室稳定支持科研项目(WDZC20195500505)

Research status and development trend of imitated vegetation hyperspectral camouflage material technology

  • ZU Mei ,
  • YAN Feng ,
  • CHENG Haifeng ,
  • LIU Dongqing ,
  • CHEN Chen ,
  • LI Mingyang
Expand
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science, National University of Defense Technology, Changsha 410073, China

Received date: 2020-11-11

  Revised date: 2021-04-21

  Online published: 2021-09-07

摘要

近年来高光谱成像技术迅速发展,在军事领域应用十分广泛,这既为军事侦察带来了巨大机遇,也为军事伪装带来了前所未有的挑战。分析了高光谱成像探测技术对伪装隐身技术产生的威胁以及传统高光谱伪装材料与技术面临的巨大困境,分别从植物伪装技术、基于无机颜料的仿生伪装、基于叶绿素的仿生伪装等材料体系阐述了模拟植被背景的高光谱伪装材料与技术研究现状,指出现有高光谱伪装材料与技术中仿生伪装技术存在仿生材料无法精准模拟绿色植被的特征吸收峰、稳定性及耐久性较差、材料整体厚度大,难以实现实际的大规模应用等弊端,在此基础上提出基于活体生物的“生态伪装”技术伪装对策,指出改进“仿生伪装”技术和优化“生态伪装”技术为高光谱伪装材料与技术的未来发展方向和趋势。

本文引用格式

祖梅 , 鄢峰 , 程海峰 , 刘东青 , 陈晨 , 李铭洋 . 仿植被高光谱伪装材料技术研究进展[J]. 科技导报, 2021 , 39(14) : 100 -106 . DOI: 10.3981/j.issn.1000-7857.2021.14.010

Abstract

In recent years, the hyperspectral imaging technology sees a rapid development and is widely applied in the military field, with great opportunities for military reconnaissance and unprecedented challenges for military camouflage. This paper analyzes a specular like detection technology for disguising the threat of the stealth technology and the difficulties in the traditional hyperspectral camouflage materials and technology. The researches of the hyperspectral camouflage materials and technologies for simulating the vegetation background are reviewed, focusing on four material systems:The plant camouflage technology, the biomimetic camouflage based on inorganic pigments, the biomimetic camouflage based on the chlorophyll and the "ecological camouflage" based on living organisms. The shortcomings of the existing hyperspectral camouflage materials and techniques in the biomimetic camouflage technology are analyzed. It is shown that the bionic materials cannot accurately simulate the characteristic absorption peak of the green vegetation, the stability and the durability of the biomimetic materials are poor, and the overall thickness of the materials is large, which is difficult to realize in the practical large-scale application. On this basis, a camouflage strategy is put forward to use the "ecological camouflage" based on living organisms. It is proposed that the future development direction and the trend of the hyperspectral camouflage materials and technology are to improve the "bionic camouflage" technology and optimize the "ecological camouflage" technology.

参考文献

[1] 马丽芳, 时家明, 陈宗胜. 绿色伪装涂料可见光和近红外反射率的探讨[J]. 红外技术, 2010, 32(5):268-272.
[2] 杨玉杰, 刘志明, 胡碧茹. 基于光谱分析的植物叶片仿生伪装材料设计[J]. 光谱学与光谱分析, 2011, 31(6):1668-1672.
[3] 刘凯龙. 地面目标伪装特征的高光谱成像检测方法[J]. 解放军理工大学学报(自然科学版), 2005, 6(2):166-169.
[4] Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation[J]. IEEE Signal Processing Magazine, 2002, 19(1):12-16.
[5] 马玲, 崔德琪, 王瑞, 等. 成像光谱技术的研究与发展[J]. 光学技术, 2006, 32(增刊1):573-580.
[6] 张朝阳, 程海峰, 陈朝辉, 等. 高光谱遥感的发展及其对军事装备的威胁[J]. 光电技术应用, 2008, 23(1):10-12.
[7] Murchie S, Arvidson R, Bedini P, et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)[J]. Journal of Geophysical Research Atmospheres, 2007, 112(5):431-433.
[8] Li X P, Chen J P, Wang X. Inversion of lunar nearside FeO and Al2O3 based on Chang'e-1 reflectance data[J]. China Mining Magazine, 2018, 27(7):150-156.
[9] Bergman S M. The utility of hyperspectral data to detect and discriminate actual and decoy target vehicles[R]. Washington DC:Directorate for Information Operations and Reports, 1996.
[10] Bárta V, Racek F, Krejcí J. NATO hyperspectral measurement of natural background[J]. The International Society for Optical Engineering, 2018, 10794:1-16.
[11] Stellman C M, Hazel G G, Schuler J M, et al. Spectral calibration, spatial mapping and flat fielding studies of the dark horse 1(DH1) march data collection[R]. Washington DC:Naval Research Laboratory, 1999.
[12] 刑欣等. 隐身伪装技术基础[M]. 长沙:国防科技大学出版社, 2011.
[13] Ye H, Gao Y, Li S M, Guo L. Bionic leaves imitating the transpiration and solar spectrum reflection characteristics of natural leaves[J]. Journal of Bionic Engineering, 2015, 12(1):109-116.
[14] Gao Y, Ye H. Bionic membrane simulating solar spectrum reflection characteristics of natural leaf[J]. International Journal of Heat and Mass Transfer, 2017, 114:115-124.
[15] Xu K, Ye H. Preparation and optimization of biomimetic materials simulating solar spectrum reflection characteristics of natural leaves[J]. Journal of Materials Science, 2020, 55:12848-12863.
[16] 夏晨硕, 陈乐, 孙惠敏, 等. 一种新型高光谱涂层的设计与研制[J]. 功能材料, 2018, 49(7):7151-7155.
[17] 李敏, 李澄, 郑顺丽, 等. 模拟绿色植物光谱的填料设计与涂层制备研究[J]. 红外技术, 2015(9):788-792.
[18] Liu Z, Wu W, Hu B. Design of biomimetic camouflage materials based on angiosperm leaf organs[J]. Science in China Series E:Technological Sciences, 2008, 51(11):1902-1910.
[19] 郭利, 徐国跃, 李澄, 等. 一种新型近红外伪装涂层的制备及光谱性能研究[J]. 红外技术, 2012(10):588-592.
[20] Yuan L, Wang C, Qing X L, et al. Synthesis and fine spectroscopy tuning of the hyperspectral simulation material based on organic anions intercalated Mg-Al layered double hydroxide[J]. Infrared Physics & Technology, 2020, 107:103328.
[21] 刘志明. 植物叶片仿生伪装材料研究[D]. 长沙:国防科学技术大学, 2009:9.
[22] Yang Y J, Liu Z M, Hu B R, et al. Bionic composite material simulating the optical spectra of plant leaves[J]. Journal of Bionic Engineering, 2010, 7(3):S43-S49.
[23] 黄之杰, 费逸伟, 黄之宁. 叶绿素在绿色伪装涂料中的应用研究[J]. 特种功能材料, 2006, 9(4):13-17.
[24] Qin R, Xu G Y, Guo L, et al. Preparation and characterization of a novel poly(urea-formaldehyde) microcapsules with similar reflectance spectrum to leaves in the UV-Vis-NIR region of 300-2500 nm[J]. Materials Chemistry and Physics, 2012, 136(2):737-743.
[25] Wang Z Y, Wang C D, Hou H B, et al. A facile fabrication of stimulus-responsive amorphous photonic crystals in the near-infrared region[J]. Applied Surface Science, 2019, 479:1014-1020.
[26] Rossiter J, Yap B, Conn A. Biomimetic chromatophores for camouflage and soft active surfaces[J]. Bioinspiration & Biomimetics, 2012, 7(3):036009.
[27] Wang X, Deng Y Q, Yang D, et al. Biomimetic inornic camouflage circumvents antibody-dependent enhancement of infection[J]. Chemical Science, 2017, 8(12):8240-8246.
[28] Yang Y, Lin L, Cai Z H, et al. Plasmonic nanoparicles tuned thermal sensitive photonic polymer for biomimetic chameleon[J]. Scientific Reports, 2016, 6:31328.
[29] Wang G P, Chen X C, Liu S, et al. Mechanical chameleon through dynamic real-time plasmonic tuning[J]. ACS Nano, 2016, 10(2):1788.
[30] Long P, Iv W G W, Ordinario D D, et al. Camouflage coatings:Reconfigurable infrared camouflage coatings from a cephalopod protein[J]. Advanced Materials, 2013,25(39):5621.
[31] 徐栋, 陈宏书, 王结良. 变色材料的研究进展[J]. 兵器材料科学与工程, 2011, 34(3):87-91.
[32] 鲍利红, 曹苏毅, 赵曼雨, 等. 双羟基螺吡喃的合成及其光致变色性能研究[J]. 化工新型材料, 2018, 46(5):137-143.
[33] 张凤, 管萍, 胡小玲. 有机可逆热致变色材料的变色机理及应用进展[J]. 材料导报, 2012, 26(9):76-80.
[34] 张澍声. 可逆热致变色材料[J]. 染料工业, 2002, 39(6):16-18.
文章导航

/