[1] 吴伟仁, 于登云 . 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17.
[2] 国家航天局. 国际月球科研站合作指南[EB/OL]. (202106-16)[2023-07-31]. https://www.cnsa.gov.cn/n6758823/ n6758838/c6812147/content.html.
[3] 中华人民共和国中央人民政府门户网站. 国家航天局与亚太空间合作组织签署关于国际月球科研站合作联合声明 [EB/OL]. [2023-07-31]. https://www. gov. cn/lianbo/ 2023-04/25/content_5753104.htm.
[4] 裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577-2586.
[5] Fa W, Jin Y Q. Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer[J]. Icarus, 2007, 190(1): 15-23.
[6] Zong K, Wang Z, Li J, et al. Bulk compositions of thechang'e-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts[J]. Geochimica et Cosmochimica Acta, 2022, 335: 284-296.
[7] 王志琴, 李孟哲, 张津泽, 等. 火星探测用金属/CO2燃烧技术研究进展与展望[J]. 宇航总体技术, 2019(5): 61-70.
[8] Mellon M T, Arvidson R E, Sizemore H G, et al. Ground ice at the phoenix landing site: Stability state and origin [J]. Journal of Geophysical Research, 2009, 114(E1): 288293.
[9] 冯磊, 舒文祥, 文陈, 等 . 火星原位资源可用途径分析[J]. 材料导报, 2022, 36(22): 3-9.
[10] 张克非, 李怀展, 汪云甲, 等. 太空采矿发展现,机遇和挑战[J]. 中国矿业大学学报, 2020, 49(6): 1025-1034.
[11] Li A, Chen X, Song L, et al. Taking advantage of glass: Capturing and retaining the helium gas on the moon[J]. Materials Futures, 2022, 1(3): 035101.
[12] Zacny K, Chu P, Paulsen G, et al. Mobile in-situ water extractor (MISWE) for Mars, Moon, and Asteroids in situ resource utilization[C]//AIAA SPACE 2012 Conference & Exposition. Pasadena, California: 2012: 5168.
[13] Sowers G F, Dreyer C B. Ice mining in lunar permanently shadowed regions[J]. New Space, 2019, 7(4): 235-244.
[14] Cole J D, Lim S, Sargeant H M, et al. Water extraction from icy lunar simulants using low power microwave heating[J]. Acta Astronautica, 2023, 209: 95-103.
[15] 王超, 张晓静, 姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文), 2020, 7(3): 241-247.
[16] 靳宇, 舒文祥, 张伟伟, 等 . 火星水冰采集技术发展现状及方案设想[J]. 载人航天, 2020, 26(1): 128-134.
[17] Wang S, Xu B, Huo W, et al. Efficient FeCoNiCuPd thin-film electrocatalyst for alkaline oxygen and hydrogen evolution reactions[J]. Applied Catalysis B: Environmental, 2022, 313: 121472.
[18] Zhong Y, Low J, Zhu Q, et al. In situ resource utilization of lunar soil for highly efficient extraterrestrial fuel and oxygen supply[J]. National Science Review, 2023, 10(2): nwac200.
[19] Perera M S A, Ranjith P G, Viete D R. Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin[J]. Applied Energy, 2013, 110: 73-81.
[20] Hoffman J A, Rapp D, Hecht M. The Mars oxygen ISRU experiment(MOXIE)on the Mars 2020 rover[C]//AIAA SPACE 2015 Conference and Exposition. Pasadena, California: 2016, 82-87.
[21] O' Brien J E, Mckellar M G, Harvego E A, et al. High temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy-summary of system simulation and economic analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4808-4819.
[22] Robert P M. Regolith advanced surface systems operations robot (RASSOR) excavator: U.S. Patent 9,027,265 [P]. 2015-03-12.
[23] Clark D. Field test results of the PILOT hydrogen reduction reactor[C]//AIAA Space 2009. Pasadena, CA: International Astronautical Federation, 2009, 9: 14-17.
[24] Lee A, Oryshchyn L, Paz A, et al. The ROxygen project outpost-scale lunar oxygen production system development at Johnson Space Center[J]. Journal of Aerospace Engineering, 2013, 26(1): 67-73.
[25] Sargeant H M. Water from lunar regolith: Reduction by hydrogen for a small-scale demonstration of in situ resource utilisation for the Moon[D]. London: Open University (United Kingdom), 2020.
[26] Denk T. Terrestrial demonstrator for the hydrogen extraction of oxygen from lunar regolith with concentrated solar energy[D]. Sevilla: Departamento de Ingeniería Energética, Universidad de Sevilla, 2022.
[27] Gustafson R. Demonstrating the solar carbothermal reduction of lunar regolith to produce oxygen[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida, USA: International Astronautical Federation, 2010: 1163.
[28] Dunbar B. NASA successfully extracts oxygen from lunar soil simulant[EB/OL]. (2023-04-25) [2023-07-31]. https://www. nasa. gov/feature/nasa-successfully-extractsoxygen-from-lunar-soil-simulant.
[29] Shchetkovskiy. Development and testing of high surface area iridium anodes for molten oxide electrolysis[M]// Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. New York: American Society of Civil Engineers, 2010: 10391045.
[30] Space Applications. ESA awards space resources contract to space applications services[EB/OL]. (2012-0521) [2023-07-31]. https://www. spaceapplications. com/ news/esa-awards-space-resources-contract-to-spaceapplications-services.
[31] Li Y, Li X, Wang S, et al. In-situ water production by reducing ilmenite[J]. Moon: Prospective Energy and Material Resources, 2012: 189-200.
[32] 刘爱民. 混合氧化物及月壤仿真样提取金属和制备氧气[D]. 沈阳: 东北大学, 2018.
[33] 寇明银, 王明涌, 焦树强. 高温熔盐体系惰性阳极与月壤电解制氧技术 [J]. 工程科学学报 , 2021, 43(12):1618-1629.
[34] Shi H, Li P, Yang Z, et al. Extracting oxygen from chang'e-5 lunar regolith simulants[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(41): 13661-13668.
[35] Stoker C R, Gooding J L, Roush T, et al. The physical and chemical properties and resource potential of Martian surface soils[J]. Resources of Near-earth Space, 1993: 659-707.
[36] 李艳菊, 吴月, 范春萍, 等 . 火星表面高氯酸盐生物转化及原位制氧工艺技术[J]. 空间科学学报, 2020, 40(4): 531-539.
[37] Enke B L. Mars: Prospective energy and material resources[M]. Bucharest: Springer Science & Business Media, 2009.
[38] Wang C, Gong H, Wei W, et al. Vat photopolymerization of low-titanium lunar regolith simulant for optimal mechanical performance[J]. Ceramics International. 2022, 48(20): 29752-29762.
[39] Ceccanti F. 3D printing technology for a moon outpost exploiting lunar soil[C]//Proceeding of the 61st international Astronautical congress IAC. Prague, Czech Republic: International Astronautical Federation, 2010: 1-9.
[40] 周思齐, 张荣荣, 杨湛宁, 等. 3D打印模拟月壤道路材料制备与性能研究[J]. 中国公路学报, 2022, 35: 105-117.
[41] Goulas A, Engstrøm D S, Friel R J, et al. Investigating the additive manufacture of extra-terrestrial materials [C]//27th Annual International Solid Freeform Fabrication (SFF) Symposium-An Additive Manufacturing Conference. Austin, Texas: SFF, 2016: 2271-2281.
[42] 李雯, 徐可宁, 黄勇, 等 . 基于 SLM 的模拟月壤原位成形技术[J]. 北京航空航天大学学报, 2019, 45: 1931-1937.
[43] Nakamura T, Smith B K. Solar thermal system for lunar ISRU applications: Development and field operation at Mauna Kea, HI[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Orlando, Florid: American Institute of Aeronautics and Astronautics, Inc., 2011: 1889-1896.
[44] 王锐 . 月壤资源太阳光 3D 打印工程材料化利用研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[45] Taylor L A, Meek T T. Microwave sintering of lunar soil: Properties, theory, and practice[J]. Journal of Aerospace Engineering, 2005, 18: 188-196.
[46] 高楠, 许英奎, 罗泰义, 等 . 月球矿产资源勘查进展及展望[J]. 矿物学报, 2022, 42(2): 222-230.