科技人文

数学天才罗赫:智慧而短暂的一生

  • 段玥芮 ,
  • 王淑红
展开
  • 河北师范大学数学科学学院, 石家庄 050024
段玥芮,硕士研究生,研究方向为近现代数学史,电子信箱:501757248@qq.com;王淑红(通信作者),教授,研究方向为近现代数学史,电子信箱:zyfwsh@sina.com

收稿日期: 2024-05-12

  修回日期: 2024-08-17

  网络出版日期: 2024-10-30

基金资助

国家自然科学基金项目(12271138,12171137)

A wise and short life of Roch, the gifted mathematician

  • DUAN Yuerui ,
  • WANG Shuhong
Expand
  • School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China

Received date: 2024-05-12

  Revised date: 2024-08-17

  Online published: 2024-10-30

摘要

古斯塔夫·罗赫是德国著名数学家、物理学家,以黎曼-罗赫定理而闻名,推动了代数几何等领域的发展。通过文献研读和历史分析,研究了罗赫的成长经历、主要成就及其影响,展示了他一生勤奋好学、积极进取,在科学研究上勇于探索、持之以恒,在教学上认真负责、甘为人梯,短暂的一生彰显了无穷的智慧。

本文引用格式

段玥芮 , 王淑红 . 数学天才罗赫:智慧而短暂的一生[J]. 科技导报, 2024 , 42(24) : 128 -135 . DOI: 10.3981/j.issn.1000-7857.2023.05.00721

Abstract

Famous for the Riemann-Roch theorem, Gustav Roch, a renowned German mathematician and physicist, has promoted the development of algebraic geometry. Based on literature study and historical analysis, in this paper, Roch's life experience, major achievements and the related influence are reviewed. In his whole life, Roch demonstrated diligence and entrepreneurial spirit. He was brave to explore and persistent in scientific research, serious and responsible in teaching, and willing to serve as a ladder. His short life was full of infinite wisdom.

参考文献

[1] Gray J J. The Riemann-Roch theorem and geometry, 1854-1914[J]. Documenta Mathematica, 1998, 3: 811- 822.
[2] Goebel M, Schlosser H, Sekatzek M. Gustav Roch (1839- 1866) [EB/OL]. (1999-05-06) [2023-04-23]. http://www. mathematik.uni-halle.de/history/roch/index.html.
[3] Patrick P P. What is the genus? [M]. Cham: Springer, 2016: 43-166.
[4] 胡作玄. 近代数学史[M]. 济南: 山东教育出版社, 2006: 526-532.
[5] Kline M. Mathematical thought from ancient to modern times[M]. New York: Oxford University Press, 1972: 997-1116.
[6] Bottazzini U, Gray J J. Hidden harmony: Geometric fantasies[M]. New York: Springer, 2013: 260-739.
[7] Riemann B. Theorie der Abel'schen functionen[J]. Journal Für Die Reine und Angewandte Mathematik, 1857, 54: 115-155.
[8] Roch G. Ueber die Anzahl der willkürlichen constanten in algebraischen functionen[J]. Journal für die reine und angewandte Mathematik, 1865, 64: 372-376.
[9] Brill A, Noether M. Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie[J]. Mathematische Annalen, 1874, 7(2): 269-310.
[10] Dedekind R, Weber H. Theorie der algebraischen functionen einer veränderlichen[J]. Journal Fur Die Reine und Angewandte Mathematik, 1882, 92: 181-290.
[11] Kodaira K. The theorem of Riemann-roch on compact analytic surfaces[J]. American Journal of Mathematics, 1951, 73(4): 813-875.
[12] Hirzebruch F. Arithmetic Genera and the theorem of Riemann-roch for algebraic varieties[J]. Proceedings of the National Academy of Sciences of the United States of America, 1954, 40(2): 110-114.
[13] Borel A, Serre J P. Le théorème de Riemann-Roch[J]. Bulletin de la Société mathématique de France, 1958, 86: 97-136.
[14] Atiyah M F, Singer I M. The index of elliptic operators on compact manifolds[J]. Bulletin of the American Mathematical Society, 1963, 69(3): 422-433.
[15] Roch G. Ueber Theta-functionen vielfacher argumente [J]. Journal für die reine und angewandte Mathematik, 1866, 66: 177-184.
[16] Del Centina A. Weierstrass points and their impact in the study of algebraic curves: A historical account from the "Lückensatz" to the 1970s[J]. Annali dell'Università di Ferrara, 2008, 54: 37-59.
[17] O'Connor J J, Robertson E F. Gustav Roch[EB/OL]. (2006-03-01) [2023-04-23]. https://mathshistory. st-andrews.ac.uk/Biographies/Roch.
文章导航

/