Articles

Optimization of drifting ventilation method for high-altitude mine

  • GONG Jian ,
  • HU Nailian ,
  • CUI Xiang ,
  • WANG Xiaodong
Expand
  • Key Laboratory of High-efficient Mining and Safety of Metal Mines of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China

Received date: 2014-08-19

  Revised date: 2014-11-09

  Online published: 2015-03-19

Abstract

In order to solve the drifting ventilation problem in high-altitude mines, a comprehensive evaluation model for ventilation is established based on the basic theory of analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). Three kinds of compound drifting ventilation methods are evaluated with a poly-metallic ore in Tibet autonomous region as the engineering background. First, evaluation indexes of ventilation system are selected from three aspects: technology, economy and security, according to the special environment of negative pressure and hypoxia in high-altitude mines. Then, the weight matrix of each evaluation index is determined objectively through the AHP method. Finally, the closeness is analyzed with the combination of TOPSIS method and the superior degree of each ventilation method is calculated. The results show that the second ventilation method, i.e., far-pressing-near-absorption, is the optimal. The optimization results calculated by AHP-TOPSIS method are scientific and reasonable and in line with the actual production, which can provide a theoretical basis for the selection of drifting ventilation method for high-altitude mines.

Cite this article

GONG Jian , HU Nailian , CUI Xiang , WANG Xiaodong . Optimization of drifting ventilation method for high-altitude mine[J]. Science & Technology Review, 2015 , 33(4) : 56 -60 . DOI: 10.3981/j.issn.1000-7857.2015.04.009

References

[1] 谢贤平, 冯长根, 赵梓成. 矿井通风系统模糊优化研究[J]. 煤炭学报, 1999, 24(4): 379-382. Xie Xianping, Feng Changgen, Zhao Zicheng. Research on fuzzy optimization for mine ventilation systems[J]. Journal of China Coal Society, 1999, 24(4): 379-382.
[2] 周福宝, 王德明, 李正军. 矿井通风系统优化评判的模糊优选分析法[J]. 中国矿业大学学报, 2002, 31(3): 262-266. Zhou Fubao, Wang Deming, Li Zhengjun. Fuzzy optimum selection and analysis for optimization and evaluation of mine ventilation systems[J]. Journal of China University of Mining & Technology, 2002, 31(3): 262-266.
[3] 蔡卫. 矿井通风系统安全性评价及其应用[J]. 煤炭学报, 2004, 29(2): 195-198. Cai Wei. Safety evaluation and its application on coal mine ventilation system[J]. Journal of China Coal Society, 2004, 29(2): 195-198.
[4] 程磊, 杨运良, 熊亚选. 基于人工神经网络的矿井通风系统评价研究[J]. 中国安全科学学报, 2005, 15(5): 88-91. Cheng Lei, Yang Yunliang, Xiong Yaxuan. Study of mine ventilation system assessment based on artificial neural network[J]. China Safety Science Journal, 2005, 15(5): 88-91.
[5] Lin Mingyuan, Wang Chencheng, Chen Mingshi, et al. Using AHP and TOPSIS approaches in customer-driven product design process[J]. Computers in Industry, 2008, 59: 17-31.
[6] 陈婷婷, 宋永发. 基于AHP-TOPSIS的地铁车站施工方案比选[J]. 工程管理学报, 2012(4): 33-36. Chen Tingting, Song Yongfa. Construction planning decision of subway stations based on AHP-TOPSIS method[J]. Journal of Engineering Management, 2012(4): 33-36.
[7] 黄贯虹, 方刚. 系统工程方法与应用[M]. 广州: 暨南大学出版社, 2005: 45-48. Huang Guanhong, Fang Gang. System engineering method and application[M]. Guangzhou: Jinan University Press, 2005: 45-48.
[8] 龚剑, 胡乃联, 张延凯, 等. 基于AHP-FCE法的高海拔地区采矿方法优选[J]. 金属矿山, 2013(9): 1-5. Gong Jian, Hu Nailian, Zhang Yankai, et al. Optimization of mining methods in high-altitude areas based on AHP-FCE[J]. Metal Mine, 2013 (9): 1-5.
[9] 许宝田, 阎长虹, 许宏发, 等. 基于模糊理论的软岩弹性模型识别及参数反分析[J]. 岩石力学与工程学报, 2006, 25(11): 2280-2286. Xu Baotian, Yan Changhong, Xu Hongfa, et al. Viscidity-elastic model identification and back analysis of parameters of soft rock on FUZZY theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(11): 2280-2286.
[10] 徐玖平, 吴巍. 多属性决策的理论与方法[M]. 北京: 清华大学出版社, 2006: 66-73. Xu Jiuping, Wu Wei. Multiple attribute decision making theory and methods[M]. Beijing: Tsinghua University Press, 2006: 66-73.
[11] 谢本贤, 陈沅江, 史秀志. 深部岩体工程围岩质量评价的IRMR法研究[J]. 中南大学学报: 自然科学版, 2007, 38(5): 987-992. Xie Benxian, Chen Yuanjiang, Shi Xiuzhi. IRMR method for evaluation of surrounding rock quality in deep rock mass engineering[J]. Journal of Central South University: Science and Technology, 2007, 38(5): 987-992.
[12] 李俊芳, 吴小萍. 基于AHP-FUZZY多层次评判的城市轨道交通线网规划方案综合评价[J]. 武汉理工大学学报, 2007, 4(2): 205-208. Li Junfang, Wu Xiaoping. Synthetic evaluation for urban rail transit line network planning scheme based on AHP-FUZZY method[J]. Journal of Wuhan Engineering University, 2007, 4(2): 205-208.
[13] 吴立云, 杨玉中, 张强. 矿井通风系统评价的TOPSIS方法[J]. 煤炭学报, 2007, 32(4): 407-410. Wu Liyun, Yang Yuzhong, Zhang Qiang. TOPSIS method for evaluation on mine ventilation system[J]. Journal of China Coal Society, 2007, 32(4): 407-410.
Outlines

/