[1] Allingham R R, Damji K F, Freedman S, 等. Shields青光眼教科书[M]. 5版. 王宁利, 译. 北京:人民卫生出版社, 2009:77-81. Allingham R R, Damji K F, Freedman S, et al. Shields' textbook of glaucoma[M]. 5th edition. Wang Lining, trans. Beijing:People's Medical Publishing House, 2009:77-81.
[2] Jonas J B, Wang N, Wang Y X, et al. Ocular hypertension:General characteristics and estimated cerebrospinal fluid pres-sure. The Beijing eye study 2011[J]. PloS One, 2014, 9(7):e100533, doi:10.1371/journal.pone.0100533.
[3] Zhang Z, Liu D, Jonas J B, et al. Axonal transport in the rat op-tic nerve following short-term reduction in cerebrospinal fluid pressure or elevation in intraocular pressure[J]. Investigative Ophthalmology & Visual Science, 2015, 56(8):4257-4266.
[4] Brandt J D. Corneal thickness in glaucoma screening, diagno-sis, and management[J]. Current Opinion in Ophthalmology, 2004, 15(2):85-89.
[5] Campos T V, Jacobovitz S, Almeida H G, et al. Computerized invasive measurement of time-dependent intraocular pressure[J]. Brazilian Journal of Medical & Biological Research, 2006, 39(9):1249-1253.
[6] 贾莉君, 蒋幼芹, 吴振中. 兔眼压正常值与前房穿刺直接测量法[J]. 眼科研究, 1994, 12(4):267-268. Jia Lijun, Jiang Youqin, Wu Zhenzhong. Normal intraocular pressure value of rabbits and direct method of measurement[J]. Chinese Journal of Experimental Ophthalmology, 1994, 12(4):267-268.
[7] 李婷. 动物眼前后房压强差变化规律的在体实验研究[D]. 北京:首都医科大学生物医学工程学院, 2008. Li Ting. Experimental study on the pressure difference between anterior and posterior chambers of the animal eyes[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2008.
[8] 宋红芳, 王文佳, 杨红玉, 等. 眼内前后房压强差在体连续测量的实验研究[J]. 生物医学工程学杂志. 2018, 35(3), doi:10.7507/1001-5515.201611020. Song Hongfang, Wang Wenjia, Yang Hongyu, et al. Experimental study on the in vivo continuous measurement of pressure difference between the anterior and the posterior chambers[J]. Journal of Biomedical Engineering,2018, 35(3), doi:10.7507/1001-5515.201611020.
[9] Song H, Li L, Wang W, et al. Numerical simulation of multifield coupling in aqueous humor under the condition of dynam-ic pressure[J]. International Journal of Computational Methods, 2018, doi:10.1142/S021987621842001X.
[10] 林丁, 蒋幼芹, 吴振中. 瞳孔阻滞的研究与进展[J]. 眼科, 1993, 2(4):244-247. Lin Ding, Jiang Youqin, Wu Zhenzhong. The research progress of pupillary block[J]. Ophthalmology in China, 1993, 2(4):244-247.
[11] Kondo T, Miura M, Imamichi M. Measurement method of the anterior chamber volume by image analysis[J]. British Journal of Ophthalmology, 1986, 70(9):668-672.
[12] Quigley H A, Friedman D S, Congdon N G. Possible mecha-nisms of primary angle-closure and malignant glaucoma[J]. Journal of Glaucoma, 2003, 12(2):167-180.
[13] 陈琛, 刘晓华, 林丁, 等. 基于定量瞳孔阻滞力仿真实验的虹膜组织生物力学特性分析[J]. 眼科新进展, 2006, 26(4):248-252. Chen Chen, Liu Xiaohua, Lin Ding, et al. An experiment research based on simulating pupillary blocking force to analyze mechanical properties of iris tissue quantitatively[J]. Recent Advance of Ophthalmol, 2006, 26(4):248-252.
[14] 薄雪峰. 虹膜位形变化规律及本构关系的实验研究[D]. 北京:首都医科大学生物医学工程学院, 2010. Bo Xuefeng. Experimental research on the anamorphic rule and mechanical properties of iris[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2010.
[15] Zhang K Y, Qian X Q, Mei X, et al. An inverse method to de-termine the mechanical properties of the iris in vivo[J]. Bio-medical Engineering Online, 2014, 13, doi:10.1186/1475-925X-13-66.
[16] 王万笔, 敖开忠, 樊建中, 等. 适于磁共振成像研究房水循环兔模型的建立[J]. 放射学实践, 2008, 23(10):1076-1078. Wang Wanbi, Ao Kaizhong, Fan Jianzhong, et al. Establishmen of rabbit model of aquaoculi circulation for MRI Study[J]. Radiology Practic, 2008, 23(10):1076-1078.
[17] Yang H Y, Song H F, Mei X, et al. Experimental research on intraocular aqueous flow by PIV method[J]. BioMedical Engi-neering OnLine, 2013, 12, doi:10.1186/1475-925X-12-108.
[18] 刘志成, 梅曦, 曹海勇. 一种眼前节房水循流仿真装置:201410116006.5[P]. 2014-07-02. Liu Zhicheng, Mei Xi, Cao Haiyong. A simulation device of aqueous humor flow:201410116006.5[P]. 2014-07-02.
[19] Wang W J, Qian X Q, Song H F, et al. Fluid and structure coupling analysis of the interaction between aqueous humor and iris[J]. BioMedical Engineering Online, 2016, 15(Suppl 2):569-586.
[20] Villamarin A, Roy S, Hasballa R, et al. 3D simulation of the aqueous flow in the human eye[J]. Medical Engineering Phys-ics, 2012, 34(10):1462-1470.
[21] 宋红芳. 基于在体实测前后房压强差的房水循流仿真研究[D]. 北京:首都医科大学生物医学工程学院, 2012. Song Hongfang. Simulation of the aqueous humor flow based on the pressure difference between anterior and posterior chambers in vivo[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2012.
[22] Hann C R, Fautsch M P. The elastin fiber system between and adjacent to collector channels in the human juxtacanalicu-lar tissue[J]. Investigative Ophthalmology & Visual Science, 2011, 52(1):45-50.
[23] Alvarado J A, Alvarado R G, Yeh R F, et al. A new insight into the cellular regulation of aqueous outflow:How trabecu-lar meshwork endothelial cells drive a mechanism that regu-lates the permeability of Schlemm's canal endothelial cells[J]. The British Journal of Ophthalmology, 2005, 89(11):1500-1505.
[24] 邹欢. 持续高眼压波动引起小梁网结构改变的研究[D]. 重庆:第三军医大学第三附属医院, 2014. Zou Huan. Continuous large fluctuations in intraocular pressure change the trabecular meshwork structure[D]. Chongqing:Third Affiliated Hospital, Third Military Medical University, 2014.
[25] Mei X, Ren L, Xu Q, et al. Effect of persistent high intraocu-lar pressure on microstructure and hydraulic permeability of trabecular meshwork[J]. Chinese Physics B, 2015, 24(5):058701, doi:10.1088/1674-1056/24/5/058701.
[26] Zhang J, Ren L, Mei X, et al. Microstructure visualization of conventional out fl ow pathway and finite element modeling analysis of trabecular meshwork[J]. Biomedical Engineering Online, 2016, 15(Suppl 2):323-334.
[27] Camras L J, Stamer W D, Epstein D, et al. Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes[J]. Investigative Ophthalmology & Vi-sual Science, 2012, 53(9):5242-5250.
[28] Last J A, Pan T, Ding Y, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork[J]. Investigative Ophthalmology & Visual Science, 2011, 52(5):2147-2152.
[29] Vranka J A, Staverosky J A, Reddy A P, et al. biomechanical rigidity and quantitative proteomics analysis of segmental re-gions of the trabecular meshwork at physiologic and elevated pressures[J]. Investigative Ophthalmology & Visual Science, 2018, 59(1):246-259.
[30] Wang K, Johnstone M A, Xin C, et al. Estimating human tra-becular meshwork stiffness by numerical modeling and ad-vanced OCT imaging[J]. Investigative Ophthalmology & Visu-al Science, 2017, 58(11):4809-4817.
[31] Camras L J, Stamer W D, Epstein D, et al. Circumferential tensile stiffness of glaucomatous trabecular meshwork[J]. In-vestigative Ophthalmology & Visual Science, 2014, 55(2):814-823.
[32] Chang J, Huang J, Li L, et al. Stiffness characterization of anisotropic trabecular meshwork[J]. Journal of Biomechanics, 2017, 61:144-150.
[33] Hoyt W F, Frisén L, Newman N M. Fundoscopy of nerve fiber layer defects in glaucoma[J]. Investigative Ophthalmology & Visual Science, 1973, 12(11):814-829.
[34] Tsai J C. Optical coherence tomography measurement of reti-nal nerve fiber layer after acute primary angle closure with normal visual field[J]. American Journal of Ophthalmology, 2006, 141(5):970-972.
[35] 戴惟葭, 边俊杰, 杨惠青, 等. 急性闭角型青光眼视网膜神经纤维层改变的一年动态观察[J]. 眼科, 2010, 19(5):331-335. Dai Weijia, Bian Junjie, Yang Huiqing, et al. One year dynamic change of retinal never fiber layer thickness after acute attack in primary angle closure glaucoma[J]. Ophthalmology in China, 2010, 19(5):331-335.
[36] Schuman J S, Pedut-Kloizman T, PakteR H, et al. Optical co-herence tomography and histologic measurements of nerve fi-ber layer thickness in normal and glaucomatous monkey eyes[J]. Investigative ophthalmology & Visual Science, 2007, 48(8):3645-3654.
[37] 崔倩倩, 邱建峰, 钱秀清, 等. 急性高眼压引起视网膜神经纤维层厚度改变的规律研究[J]. 医用生物力学, 2012, 27(2):214-219. Cui Qianqian, Qiu Jianfeng, Qian Xiuqing, et al. Regularity on change of retinal nerve fiber layer thickness with acute high intraocular pressure[J]. Journal of Medical Biomechanics, 2012, 27(2):214-219.
[38] Kagemann L, Ishikawa H, Wollstein G, et al. Ultrahigh-reso-lution spectral domain optical coherence tomography imaging of the lamina cribrosa[J]. Ophthalmic Surgery Lasers & Imag-ing, 2007, 39(suppl 4):S126-S131.
[39] Zhao Q Y, Qian X Q, Li L, et al. Effect of elevated intraocu-lar pressure on the thickness changes of cat laminar and prelaminar tissue using optical coherence tomography[J]. BioMedical Materials and Engineering, 2014, 24(6):2349-2360.
[40] He D Q, Ren Z Q. A biomathematical model for pressure-de-pendent lamina cribrosa behavior[J]. Journal of Biomechanics, 1999, 32(6):579-584.
[41] Newson T, El-Sheikh A. Mathematical modeling of the biome-chanics of the lamina cribrosa under elevated intraocular pres-sures[J]. Journal of Biomechanical Engineering, 2006, 128(4):496-504.
[42] Tian H J, Li L, Song F. Study on the deformations of the lami-na cribrosa during glaucoma[J]. Acta Biomaterialia, 2017, 55:340-348.
[43] Quigley H A, Addicks E M, Green W R, et al. Optic nerve damage in human glaucoma. Ⅱ:The site of injury and suscep-tibility to damage[J]. Archives of Ophthalmology, 1981, 99(4):635-649.
[44] Roberts M D, Grau V, Grimm J, et al. Remodeling of the con-nective tissue microarchitecture of the lamina cribrosa in ear-ly experimental glaucoma[J]. Investigative Ophthalmology & Visual Science, 2009, 50(2):681-690.
[45] Sigal I A, Flanagan J G, Tertinegg I, et al. Reconstruction of human nerve heads for finite element modeling[J]. Technology and Health Care, 2005, 13:313-329.
[46] Sigal I A, Flanagan J G, Tertinegg I, et al. Modeling individu-al-specific human optic nerve head biomechanics. Part I:IOP-induced deformations and influence of geometry[J]. Bio-mechanics and Modeling in Mechanobiology, 2009, 8:85-98.
[47] Sigal I A, Flanagan J G, Tertinegg I, et al. Modeling individu-al-specific human optic nerve head biomechanics. Part Ⅱ:in-fluence of material properties[J]. Biomechanics and Modeling in Mechanobiology, 2009, 8:99-109.
[48] Sigal I A, Grimm J L, Jan N J, et al. Eye-specific IOP-in-duced displacements and deformations of human lamina cribrosa[J]. Investigative Ophthalmology & Visual Science, 2014, 55:1-15.
[49] Qiu J F, Qian X Q, Cui Q Q, et al. Three-dimensional recon-struction and finite element modeling analysis of the rabbit optic nerve head in acute high intraocular pressure[J]. Japa-nese Journal of Applied Physics, 2012, 51:067001, doi:10.1143/JJAP.51.067001.
[50] 邱建峰. 青光眼高眼压下的视神经乳头三维重建与仿真分析[D]. 北京:首都医科大学生物医学工程学院, 2012. Qiu Jianfeng. The 3d reconstruction and finite element analysis of optic nerve head in high intraocular pressure in glaucoma[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2012.
[51] 祁昕征, 魏超, 杨佳燕, 等. 三维有限元模型力学分析可预测视乳头的形状变化[J]. 中国组织工程研究, 2013, 17(50):8712-8718. Qi Xinzheng, Wei Chao, Yang Jiayan, et al. Shape variation of optic nerve head by mechanical analysis using three-dimensional finite element model[J]. Chinese Journal of Tissue Engineering Research, 2013, 17(50):8712-8718.
[52] Qian X Q, Zhang K Y, Liu Z C. A method to determine the mechanical properties of the retina based on an experiment in vivo[J]. Bio-Medical Materials and Engineering, 2015, 26(Sup-pl1):S287-S297.
[53] Spoerl E, Boehm A G, Pillunat L E. The influence of various substances on the biomechanical behavior of lamina cribrosa and peripapillary sclera[J]. Investigative Ophthalmology & Vi-sual Science, 2005, 46:1286-1290.
[54] Albon J, Purslow P P, Karwatowski W S S, et al. Age related compliance of the lamina cribrosa in human eyes[J]. British Journal of Ophthalmology, 2000, 84:318-323.
[55] Braunsmann C, Hammer C M, Rheinlaender J, et al. Evalua-tion of lamina cribrosa and peripapillary sclera stiffness in pseudoexfoliation and normal eyes by atomic force microscopy[J]. Investigative Ophthalmology & Visual Science, 2012, 53:2960-2967.
[56] Ben-shlomo G, Bakalash S, Lambrou G N, et al. Pattern elec-troretinography in a rat model of ocular hypertension:Func-tional evidence for early detection of inner retinal damage[J]. Experimental Eye Research, 2005, 81(3):340-349.
[57] Suzuki R, Oka T, Tamada Y, et al. Degeneration and dys function of retinal neuronsin acute ocular hypertensive rats:Involvement of calpains[J]. Journal of Ocular Pharmacology and Therapeutics, 2014, 30(5):419-428.
[58] Guo X Q, Tian B, Liu Z C, et al. A new rat model of glauco-ma induced by intracameral injection of silicone oil and elec-trocoagulation of limbal vessels[J]. Chinese Medical Journal, 2011, 124(2):309-314.
[59] 郭学谦. 慢性高眼压对大鼠视网膜和视神经损伤的在体实验研究[D]. 北京:首都医科大学生物医学工程学院, 2010. Guo Xueqian. Experimental study on the damage of retina and optical nerves in rat with chronic elevated intraocular pressure[D]. Beijing:School of Biomedical Engineering, Capital Medical University, 2010.
[60] 陈伯君, 赵明, 田蓓, 等. 小波分析在大鼠闪光视觉诱发电位特征提取中的应用[J]. 中国组织工程研究与临床康复, 2009, 13(22):4287-4290. Chen Bojun, Zhao Ming, Tian Bei, et al. Application of wavelet analysis in the feature extraction of rat flash visual evoked potential[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(22):4287-4290.
[61] 郭学谦, 田蓓, 孙世杰, 等. 高眼压对青光眼视网膜功能的影响[J]. 医用生物力学, 2010, 25(3):195-199. Guo Xueqian, Tian Bei, Sun Shijie, et al. Effect of ocular hypertension on the function of retina of glaucoma[J]. Journal of medical biomechanics, 2010, 25(3):195-199.
[62] 谢楠, 郭学谦, 田蓓, 等. 闪光视网膜电图时域、频域联合分析评价慢性高眼压模型大鼠的视网膜功能[J]. 中国组织工程研究与临床康复, 2009, 13(22):4281-4286. Xie Nan, Guo Xueqian, Tian Bei, et al. Combined analysis method of flash electroretinogram in domains of time and frequency to evaluate retinal functions of chronic ocular hypertension rat models[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(22):4281-4286.
[63] 马丽萍, 刘浏, 郭学谦, 等. 急性高眼压作用下视神经轴浆运输与视网膜光学功能的关系[J]. 中国医学物理学, 2017, 34(10):1035-1040. Ma Liping, Liu Liu, Guo Xueqian, et al. Relationship between the axonal transport of the optic nerve and the optical function of the retina in acute high intraocular pressure[J]. Chinese Journal of Medical Physics, 2017, 34(10):1035-1040.