Exclusive: Intelligent Manufacturing

Parallel manufacturing and industries 5.0: From virtual manufacturing to intelligent manufacturing

  • WANG Fei-Yue ,
  • GAO Yanchen ,
  • SHANG Xiuqin ,
  • ZHANG Jun
Expand
  • 1. The State Key Laboratory of Management and Control for Complex Systems;Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
    2. Beijing Engineering Research Center of Intelligent Systems and Technology;Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;
    3. Qingdao Academy of Intelligent Industries, Qingdao 266109, China

Received date: 2018-04-12

  Revised date: 2018-10-11

  Online published: 2018-11-27

Abstract

Based on virtual manufacturing, a new paradigm of intelligent manufacturing, parallel manufacturing is proposed. It integrates the concepts of cyber-physical-social system (CPSS) and industrial IoM by considering the complexity of physical, information and social systems. Based on ACP (artificial systems, computational experiments, parallel execution) method, an intelligent system of steel manufacturing is developed to realize parallel evolution, closed-loop feedback and cooperative optimization. It consists of three parts, namely, descriptive intelligence through software defined steelworks (SDS), predictive intelligence based on computational experiment and optimization, and prescriptive intelligence using parallel execution between virtuality and reality. Through the comprehensive utilization of descriptive, predictive and prescriptive intelligence, intelligent production is realized to transparentize and digitize the manufacturing system.

Cite this article

WANG Fei-Yue , GAO Yanchen , SHANG Xiuqin , ZHANG Jun . Parallel manufacturing and industries 5.0: From virtual manufacturing to intelligent manufacturing[J]. Science & Technology Review, 2018 , 36(21) : 10 -22 . DOI: 10.3981/j.issn.1000-7857.2018.21.001

References

[1] 殷瑞钰. 关于智能化钢厂的讨论——从物理系统一侧出发讨论钢厂智能化[J].钢铁, 2017, 52(6):1-12. Yin Ruiyu. A discussion on "smart" steel palant:View from physical system side[J]. Iron and Steel, 2017, 52(6):1-12.
[2] 毕学工, 李九林, 李鹏, 等. 德国工业4.0、中国制造2025与智能冶金浅议[J]. 钢铁, 2016, 51(3):1-8, 26. Bi Xuegong, Li Jiulin, Li Peng, et al. Brief discussions on German industry 4.0, Chinese manufacturing 2025 and intelligent metallurgy[J]. Iron and Steel, 2016, 51(3):1-8.
[3] 张建良, 周芸, 徐润生, 等. 智慧钢铁工厂的互联网+CPPS模式[J]. 钢铁, 2016, 51(4):1-7. Zhang Jianliang, Zhou Yun, Xu Runsheng, et al. Model of internet +CPPS for smart steel factory[J]. Iron and Steel, 2016, 51(4):1-7.
[4] 于勇. 唐钢智能制造的信息化架构设计[J]. 钢铁, 2017, 52(1):1-6. Yu Yong. Information architecture design of Tangsteel industry for intelligent manufacturing[J]. Iron and Steel, 2017, 52(1):1-6.
[5] 李新创, 施灿涛, 赵峰."工业4.0" 与中国钢铁工业[J]. 钢铁, 2015, 50(11):1-7. Li Xinchuang, Shi Cantao, Zhao Feng. Industry 4.0 meets with China iron and steel industry[J]. Iron and Steel, 2015, 50(11):1-7.
[6] 周佳军, 姚锡凡, 刘敏, 等.几种新兴智能制造模式研究评述[J]. 计算机集成制造系统, 2017, 23(3):624-639. Zhou Jiajun, Yao Xifan, Liu Min, et al. State-of-art review on new emerging intelligent manufacturing paradigms[J]. Computer Integrated Manufacturing Systems, 2017, 23(3):624-639.
[7] 张益, 冯毅萍, 荣冈. 智慧工厂的参考模型关键技术[J]. 计算机集成制造系统, 2016, 22(1):1-12. Zhang Yi, Feng Yiping, Rong Gang. Reference model and key technologies of smart factory[J]. Computer Integrated Manufacturing Systems, 2016, 22(1):1-12.
[8] 张祖国. 面向社会化协同的智能制造体系结构[J]. 计算机集成制造系统, 2016, 22(7):1779-1788. Zhang Zuguo. System architecture for SNS-based collaborative intelligent manufacturing[J]. Computer Integrated Manufacturing Systems, 2016, 22(7):1779-1788.
[9] 肖莹莹, 李伯虎, 侯宝存, 等. 智慧制造云中供应链管理的计划调度技术综述[J]. 计算机集成制造系统, 2016, 22(7):1619-1635. Xiao Yingying, Li Bohu, Hou Baocun, et al. Planning and scheduling technology review supply chain management in smart manufacturing cloud[J]. Computer Integrated Manufacturing Systems, 2016, 22(7):1619-1635.
[10] 吕佑龙, 张洁. 基于大数据的智慧工厂技术框架[J]. 计算机集成制造系统, 2016, 22(11):2691-2697. Lü Youlong, Zhang Jie. Big-data-based technical framework of smart factory[J]. Computer Integrated Manufacturing Systems, 2016, 22(11):2691-2697.
[11] 邓建玲, 王飞跃, 陈耀斌, 等. 从工业4.0到能源5.0:智能能源系统的概念、内涵及体系框架[J]. 自动化学报, 2015, 41(12):2003-2016. Deng Jianling, Wang Feiyue, Chen Yaobin, et al. From industies 4.0 to energy 5.0:Concept and framework of intelligent energy systems[J]. ACTA Automatica Sinica, 2015, 41(12):2003-2016.
[12] 王飞跃, 孙奇, 江国进, 等. 核能5.0:智能时代的核电工业新形态与体系架构[J]. 自动化学报, 2018, 44(5):922-934. Wang Feiyue, Sun Qi, Jiang Guojin, et al. Nuclear energy 5.0:New forms and architectures of nuclear power industry in the intelligent age[J]. Acta Automatica Sinica, 2018, 44(5):922-934.
[13] 王飞跃, 张俊. 智联网:概念、问题和平台[J]. 自动化学报, 2017, 43(12):2061-2070. Wang Feiyue, ZhangJun. Smart network:Concepts, problems and platforms[J]. Acta Automatica Sinica, 2017, 43(12):2061-2070.
[14] 桂卫华, 刘晓颖. 基于人工智能方法的复杂过程故障诊断技术[J]. 控制工程, 2002, 9(4):1-6. Gui Weihua, Liu Xiaoying. Fault diagnosis technologies based on artificial intelligence forconples process[J]. Control Engineering of China, 2002, 9(4):1-6.
[15] 王飞跃. 平行系统方法与复杂系统的管理和控制[J]. 控制与决策, 2004, 19(5):485-489. Wang Feiyue. Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004, 19(5):485-489.
[16] 王飞跃.计算实验方法与复杂系统行为分析和决策评估[J]. 系统仿真学报, 2004, 16(5):893-897. Wang Feiyue. Computaional experiments for behavior analysis and decision evaluation of complex systems[J]. Journal of System Simulation, 2004, 16(5):893-897.
[17] 王飞跃. 人工社会、计算实验、平行系统——关于复杂社会经济系统计算研究的讨论[J]. 复杂系统与复杂性科学, 2004, 1(4):25-35. Wang Feiyue. Artificial societies, computational experiments and parallel systems:A discussion on computational theory of complex social-economic systems[J]. Complex System and Complexity Science, 2004, 1(4):25-33.
[18] 王飞跃. 平行控制:数据驱动的计算控制方法[J]. 自动化学报, 2013, 39(4):293-302. Wang Feiyue. Parallel control:A method for data-driven and computational control[J]. ACTA Automatica Sinica, 2013, 39(4):293-302.
[19] 王飞跃. 基于社会计算和平行系统的动态网民群体研究[J]. 上海理工大学学报, 2011, 33(1):8-17. Wang Feiyue. Study on cyber-enabled social movement organizaitons based on social computing and parallel systems[J]. Journal of University of Shanghai for Scinece and Technology, 2011, 33(1):8-17.
[20] 王飞跃. 软件定义的系统与知识自动化:从牛顿到默顿的平行升华[J]. 自动化学报, 2015, 41(1):293-302. Wang Feiyue. Software-defined systems and knowledge automation:a parallel paradigm shift from Newton to Merton. ACTA Automatica Sinica, 2015, 41(1):293-302.
[21] 王飞跃. 平行材料:从虚拟材料到软件定义的智能材料[R]. QAⅡ技术报告, 2015. Wang Feiyue. Parallel material:From virtual material to software-defined intelligent material[R]. QAⅡ Technology Report, 2015.
[22] 李力, 林懿伦, 曹东璞, 等. 平行学习——机器学习的一个新型理论框架[J]. 自动化学报, 2017, 43(1):1-8. Li Li, Lin Yilun, Cao Dongpu, et al. Parallel learning:A new framework for machine learning[J]. ACTA Automatica Sinica, 2017, 43(1):1-8.
[23] 段伟, 曹志冬, 邱晓刚, 等. 平行应急管理系统中人工社会的语义建模[J]. 系统工程理论与实践, 2012, 32(5):1010-1017. Duan Wei, Cao Zhidong, Qiu Xiaogang, et al. Semantic modeling for artificial society in parallel emergency management system[J]. Systems Engineering-Theory & Practice, 2012, 32(5):1010-1017.
[24] 白天翔, 王帅, 沈震, 等. 平行机器人与平行无人系统:框架、结构、过程、平台及其应用[J]. 自动化学报, 2017, 43(2):161-175. Bai Tianxiang, Wang Shuai, Shen Zhen, et al. Parallel robotics and parallel unmanned systems:Framework, structure, process, platform and applications[J]. ACTA Automatica Sinica, 2017, 43(2):161-175.
[25] 王坤峰, 苟超, 王飞跃. 平行视觉:基于ACP的智能视觉计算方法[J]. 自动化学报, 2016, 42(10):1490-1500. Wang Kunfeng, Gou Chao, Wang Feiyue. Parallel vision:An ACP-based approach to intelligent vision computing[J]. ACTA Automatica Sinica, 2016, 42(10):1490-1500.
[26] 王飞跃. 社会信号处理与分析的基本框架:从社会传感网络到计算辩证解析方法[J]. 中国科学:信息科学, 2013, 43(12):1598-1611. Wang Feiyue. A framework for social signal processing and analysis:from social sensing networks to computational dialectical analytics[J]. Scientia Sinica (Informationis), 2013, 43(12):1598-1611.
[27] 王飞跃. 机器人的未来发展:从工业自动化到知识自动化[J]. 科技导报, 2015, 33(21):39-44. Wang Feiyue. On future development of robotics:From industrial automation to knowledge automation[J]. Science & Technology Review, 2015, 33(21):39-44.
[28] 袁勇, 王飞跃. 区块链技术发展现状与展望[J]. 自动化学报, 2016, 42(4):481-494. Yuan Yong, Wang Feiyue. Blockchain:The state of the art and future trends[J]. ACTA Automatica Sinica, 2016, 42(4):481-494.
[29] 刘烁, 王帅, 傅焕章, 等. 软件定义的犯罪现场分析过程及其知识自动化方案[J]. 模式识别与人工智能, 2016, 29(10):876-883. Liu Shuo, Wang Shuai, Fu Huanzhang, et al. Software-defined crime scene analysis process and its knowledge automation scheme[J]. PR & AI, 2016, 29(10):876-883.
[30] 胡玉玲, 王飞跃, 刘希未. 基于ACP方法的高层建筑火灾中人员疏散策略研究[J]. 自动化学报, 2014, 40(2):185-196. Hu Yuling, Wang Feiyue, Liu Xiwei. ACP-based research on evacuation strategies for high-rise building fire[J]. ACTA Automatica Sinica, 2014, 40(2):185-196.
[31] 张益, 冯毅萍, 荣冈. 面上智能制造的生产执行系统及其技术转型[J]. 信息与控制, 2017, 464(4):452-461. Zhang Yi, Feng Yiping, Rong Gang. Intelligent manufacturing-oriented technical transformation of manufacturing execution system[J]. Information and Control, 2017, 464(4):452-461.
[32] Wang F Y, Zhang J, Wei Q, et al. PDP:Parallel dynamic programming[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(1):1-5.
[33] Zhang N, Wang F Y, Zhu F H, et al. DynaCAS:Computational experiments and decision support for ITS[J]. IEEE Intelligent Systems, 2008, 23(6):19-23.
[34] Wang F Y. Parallel control and management for intelligent transportation systems:Concepts, architectures, and applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3):630-638.
[35] Li L, Wen D. Parallel systems for traffic control:A rethinking[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4):1179-1182.
[36] Wang F Y, Wang X, Li L X, et al. Steps toward parallel intelligence[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(4):345-348.
[37] 王飞跃. 平行制造:新IT时代的智能制造科学与技术[R]. 第二十届中国北京国际科技产业博览会科技创新与城市管理论坛, 北京, 2017. Wang Feiyue. Parallel Manufacturing:Intelligent manufacturing science and technology in the new IT era[R]. Science and Technology Innovation and Urban Management Forum of the 20th China Beijing International Technology Industry Expo, Beijing, 2017.
[38] 王飞跃. 复杂性研究与智能产业:平行企业与工业5.0, CES控制工程师峰会[R]. 上海, 2014. Wang Feiyue. Complexity research and intelligent industry:Parallel enterprises and industries 5.0, CES control engineer summit[R]. Shanghai, 2014.
Outlines

/