Exclusive: Tumor Markers

Functional design of selenium nanomedicine and its application progress in tumor precision treatment

  • ZHANG Zehang ,
  • LIU Ting ,
  • LI Haiwei ,
  • SANG Chengcheng ,
  • CHEN Yikang ,
  • CHEN Tianfeng
Expand
  • 1. College of Chemistry and Materials Science of Jinan University, Guangzhou 510632, China;
    2. Guangdong Jinan Established Selenium Source Nano Technology Research Institute Co., Ltd., Guangzhou 510535, China

Received date: 2020-09-24

  Revised date: 2021-01-31

  Online published: 2021-05-13

Abstract

Nanoselenium, as a new type of elemental selenium, has higher bioavailability, stronger biological activity and lower toxicity than organic selenium and inorganic selenium, and simultaneously has anti-oxidant and anti-tumor effects. This article mainly summarizes the application progress of selenium nanoparticles (SeNPs) in biomedicine, such as chemotherapy, radiotherapy, radio-chemotherapy and other clinical drugs to enhance the sensitization by SeNPs; the functionalization and targeted modification of SeNPs to enhance the anti-tumor effect; Se-nanomaterials in anti-tumor application; the toxicology of SeNPs; and the description of the industrialization research of SeNPs production. The review provides a guidance and support for the future nanoselenium production, study and research integration system.

Cite this article

ZHANG Zehang , LIU Ting , LI Haiwei , SANG Chengcheng , CHEN Yikang , CHEN Tianfeng . Functional design of selenium nanomedicine and its application progress in tumor precision treatment[J]. Science & Technology Review, 2021 , 39(7) : 48 -62 . DOI: 10.3981/j.issn.1000-7857.2021.07.005

References

[1] Siegel R L, Miller K D, Jemal A. Cancer statistics[J]. CA:A Cancer Journal for Clinicians, 2016, 66(1):7-30.
[2] Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology, 2007, 2:751-760.
[3] Koley P, Pramanik A. Nanostructures from single amino acid-based molecules:Stability, fibrillation, encapsulation, and fabrication of silver nanoparticles[J]. Advanced Functional Materials, 2011, 21(21):4126-4136.
[4] 李傲瑞, 乔新星, 赵飞飞, 等. 硒与人体健康关系研究进展[J]. 绿色科技, 2020(12):121-122.
[5] Xie Q, Zhou Y, Lan G, et al. Sensitization of cancer cells to radiation by selenadiazole derivatives by regulation of ROS-mediated DNA damage and ERK and AKT pathways[J]. Biochemical and Biophysical Research Communications, 2014, 449(1):88-93.
[6] Hu Y, Liu T, Li J, et al. Selenium nanoparticles as new strategy to potentiate γδ T cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation[J]. Biomaterials, 2019, 222:119397.
[7] Huang Y, Fu Y, Li M, et al. Chirality-driven transportation and oxidation prevention by chiral selenium nanoparticles[J]. Angewandte Chemie, 2020, 59(11):4436-4444.
[8] Huang J, Huang W, Zhang Z, et al. Highly uniform synthesis of selenium nanoparticles with EGFR targeting and tumor microenvironment-responsive ability for simultaneous diagnosis and therapy of nasopharyngeal carcinoma[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11177-11193.
[9] Zheng L, Huang X, Lin X, et al. Thermosensitive hydrogels for sustained-release of sorafenib and selenium nanoparticles for localized synergistic chemoradiotherapy[J]. Biomaterials, 2019(216):119220.
[10] 郭芷君, 徐峰. 化学治疗所致恶心呕吐分类与药物治疗的研究进展[J]. 中国药业, 2020, 29(22):1-6.
[11] Fang X, Li Ce, Zheng L, et al. Dual-targeted selenium nanoparticles for synergistic photothermal therapy and chemotherapy of tumors[J]. Chemistry-An Asian Journal, 2018, 13(8):996-1004.
[12] Wang Y, Liu X, Deng G, et al. Se@SiO2- FA- CuS nanocomposites for targeted delivery of DOX and nano selenium in synergistic combination of chemo-photothermal therapy[J]. Nanoscale, 2018, 10(6):2866-2875.
[13] Deng G, Zhu T, Zhou L, et al. Bovine serum albuminloaded nano-selenium/ICG nanoparticles for highly effective chemo-photothermal combination therapy[J]. RSC Advances, 2017, 7(49):30717-30724.
[14] Britten R A, Warenius H M, Carraway A V, et al. Differential modulation of radiosensitivity following induction of cis-platinum resistance in radiation-sensitive and radiation-resistant human tumor cells[J]. Radiation Oncology Investigations, 1994, 2:25-31.
[15] Shi J, Kantoff P W, Wooster R, et al. Cancer nanomedicine:Progress, challenges and opportunities[J]. Nature Reviews Cancer, 2017, 17(1):20.
[16] Yu B, Liu T, Du Y, et al. X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy[J]. Colloids and Surfaces B:Biointerfaces, 2016(139):180-189.
[17] Chen F, Zhang XH, H u X D, et al. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46:937-948.
[18] Du J, Gu Z, Yan L, et al. Poly (Vinylpyrollidone) -and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues[J]. Advanced Materials, 2017, 29(34):1701268.
[19] Yang Y, Xie Q, Zhao Z, et al. Functionalized selenium nanosystem as radiation sensitizer of 125I seeds for precise cancer therapy[J]. ACS Applied Materials & Interfaces, 2017, 9(31):25857-25869.
[20] Chang Y, He L, Li Z, et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy[J]. ACS Nano, 2017, 11(5):4848-4858.
[21] Zhang H, Sun Q, Tong L, et al. Synergistic combination of PEGylated selenium nanoparticles and X-ray-induced radiotherapy for enhanced anticancer effect in human lung carcinoma[J]. Biomedicine & Pharmacotherapy, 2018, 107:1135-1141.
[22] Yang F, Tang Q, Zhong X, et al. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles[J]. International Journal of Nanomedicine, 2012, 7:835-844.
[23] Wu H L, Li X L, Liu W, et al. Surface decoration of selenium nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and antiproliferative activity[J]. Journal Materials Chemitry, 2012, 22(19):9602-9610.
[24] Yu B, Zhang Y B, Zheng W J, et al. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles[J]. Inorganic Chemistry, 2012, 51(16):8956-8963.
[25] Zhang Y B, Li X L, Huang Z, et al. Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2013, 9(1):74-84.
[26] Zheng S Y, Li X L, Zhang Y B, et al. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction[J]. International Journal of Nanomedicine, 2012, 7:3939-3949.
[27] Nie T Q, Wu H L, Wong K H, et al. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis[J]. Journal of Materials Chemistry B, 2016, 4(13):2351-2358.
[28] Huang G N, Liu Z M, He L Z, et al. Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity[J]. Biomaterials Science, 2018, 6(9):2508-2517.
[29] Yu S M, Luk K H, Cheung S T, et al. Polysaccharideprotein complex-decorated selenium nanosystem as an efficient bone-formation therapeutic[J]. Journal of Materials Chemistry B, 2018, 6(32):5215-5219.
[30] Li Y H, Li X L, Zheng W J, et al. Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways[J]. Journal of Materials Chemistry B, 2013, 1(46):6365-6372.
[31] Huang Y Y, He L Z, Liu W, et al. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles[J]. Biomaterials, 2013, 34(29):7106-7016.
[32] Liu T, Zeng L L, Jiang W T, et al. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomedicine[J]. Nanotechnology, Biology and Medicine, 2015, 11(4):947-958.
[33] Fang X Y, Wu X L, Li C E, et al. Targeting selenium nanoparticles combined with baicalin to treat HBV-infected liver cancer[J]. RSC Advances, 2017, 7(14):8178-8185.
[34] Zeng L L, Chen J J, Ji S B, et al. Construction of a cancer-targeted nanosystem as a payload of iron complexes to reverse cancer multidrug resistance[J]. Journal of Materials Chemistry B, 2015, 3:4345-4354.
[35] Liu T, Lai L H, Song Z H, et al. A sequentially triggered nanosystem for precise drug delivery and simultaneous inhibition of cancer growth, migration, and invasion[J]. Advanced Functional Materials, 2016, 26(43):7775-7790.
[36] Jiang W T, Fu Y T, Yang F, et al. Gracilaria iemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy[J]. ACS Applied Materials & Interfaces, 2014, 6(16):13738-13748.
[37] Weis S M, Cheresh D A. Tumor angiogenesis:Molecular pathways and therapeutic targets[J]. Nature Medicine, 2011, 17(11):1359-1370.
[38] Huang J, Huang W, Zhang Z, et al. Highly uniform synthesis of selenium nanoparticles with EGFR targeting and tumor microenvironment-responsive ability for simultaneous diagnosis and therapy of nasopharyngeal carcinoma[J]. ACS Applied Materials & Interfaces, 2019, 11(12):11177-11193.
[39] Yoon D J, Kwan B H, Chao F C, et al. Intratumoral therapy of glioblastoma multiforme using genetically engineered transferrin for drug delivery[J]. Cancer Research, 2010, 70(11):4520-4527.
[40] Wang J, Tian S M, Petros R A, et al. The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies[J]. Journal American Chemistry Society, 2010, 132(32):11306-11313.
[41] Kalli K R, Oberg A L, Keeney G L, et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer[J]. Gynecologic Oncology, 2008, 108(3):619-626.
[42] Lu Y J, Low P S. Folate-mediated delivery of macromolecular anticancer therapeutic agents[J]. Advanced Drug Delivery Reviews, 2012, 64(1):342-352.
[43] Gschwind A, Fischer O M, Ullrich A. Timeline-The discovery of receptor tyrosine kinases:Targets for cancer therapy[J]. Nature Reviews Cancer, 2004, 4(5):361-370.
[44] Arteaga C L, Sliwkowski M X, Osborne C K, et al. Treatment of HER2-positive breast cancer:Current status and future perspectives[J]. Nature Reviews Clinical Oncology, 2012, 9(1):16-32.
[45] Fu X Y, Yang Y H, Li X L, et al. RGD peptide-conjugated selenium nanoparticles:Antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2016, 12(6):1627-1639.
[46] Liu C, Fu Y T, Li C E, et al. Phycocyanin-functionalized selenium nanoparticles reverse palmitic acid-induced pancreatic beta cell apoptosis by enhancing cellular uptake and blocking reactive oxygen species (ROS)-mediated mitochondria dysfunction[J]. Journal of Agricultural and Food Chemistry, 2017, 65(22):4405-4413.
[47] Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy[J]. Journal of Clinical Oncology, 2002, 20(suppl 18):1-13.
[48] Liu T, Shi C, Duan L, et al. A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis[J]. Journal of Materials Chemistry B, 2018, 6(29):4756-4764.
[49] Yu B, Zhou Y, Song M F, et al. Synthesis of selenium nanoparticles with mesoporous silica drug-carrier shell for programmed responsive tumor targeted synergistic therapy[J]. RSC Advances, 2016, 6(3):2171-2175.
[50] Bi X L, Pohl N, Dong H L, et al. Selenium and sulindac are synergistic to inhibit intestinal tumorigenesis in Apc/p21 mice[J]. Journal of Hematology & Oncology 2013, 6(1):1-7.
[51] Liu X J, Wang Y Y, Yu Q Y, et al. Selenium nanocomposites as multifunctional nanoplatform for imaging guiding synergistic chemo-photothermal therapy[J]. Colloids and Surfaces B:Biointerfaces, 2018, 166(1):161-169.
[52] Wang Y F, Wang J L, Hao H, et al. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles[J]. ACS Nano, 2016, 10(11):9927-9937.
[53] Wang D H, Ge N J, Qian S, et al. Selenium doped NiTi layered double hydroxide (Ni-Ti LDH) films with selective inhibition effect to cancer cells and bacteria[J]. RSC Advances, 2015(5):106848-106859.
[54] Cremonini E, Zonaro E, Donini M, et al. Biogenic selenium nanoparticles:Characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts[J]. Microbial Biotechnology, 2016, 9(6):758-771.
[55] Tran P A, Webster T J. Selenium nanoparticles inhibit Staphylococcus aureus growth[J]. International Journal of Nanomedicine, 2011(6):1553.
[56] Bandari M, Alsadat M, Asadpour L, et al. Antibacterial effect of synthetized selenium nanoparticles and ampicillin-selenium nanoparticles against clinical isolates of methicillin resistant Staphylococcus aureus[J]. Iranian Journal of Medical Microbiology, 2018, 11:184-191.
[57] Srivastava N, Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property[J]. Bioprocess and Biosystems Engineering, 2015, 38(9):1723-1730.
[58] Tran P A, Webster T J. Antimicrobial selenium nanoparticle coatings on polymeric medical devices[J]. Nanotechnology, 2013, 24(15):155101.
[59] Bartů něk V, Junková J, Šuman J, et al. Preparation of amorphous antimicrobial selenium nanoparticles stabilized by odor suppressing surfactant polysorbate 20[J]. Materials Letters, 2015, 152(1):207-209.
[60] Khiralla G M, El-Deeb B A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens[J]. LWT-Food Science and Technology, 2015, 63(2):1001-1007.
[61] Rana J V S. Synthesis of selenium nanoparticles using Allium sativumextract and analysis of their antimicrobial property against gram positive bacteria[J]. The Pharma Innovation, 2018, 7:262-266.
[62] Huang T, Holden J A, Heath D E, et al. Engineering highly effective antimicrobial selenium nanoparticles through control of particle size[J]. Nanoscale, 2019, 11(31):14937-14951.
[63] Misra S, Boylan M, Selvam A, et al. Redox-active selenium compounds-from toxicity and cell death to cancer treatment[J]. Nutrients, 2015, 7(5):3536-3556.
[64] Zhao Z N, Gao P, You Y Y, et al. Cancer-targeting functionalization of selenium-containing ruthenium conjugate with tumor microenvironment-responsive property to enhance theranostic effects[J]. Chemistry-A European Journal, 2018, 24(13):3289-3298.
[65] Liu C, Lai H, Chen T. Boosting natural killer cell-based cancer immunotherapy with selenocystine/transforming growth factor-beta inhibitor-encapsulated nanoemulsion[J]. ACS Nano, 2020, 14:11067-11082.
[66] Liu Z J, Fu X, Huang W, et al. Photodynamic effect and mechanism study of selenium-enriched phycocyanin from Spirulina platensis against liver tumours[J]. Journal of Photochemistry and Photobiology B:Biology, 2018, 180:89-97.
[67] Liu T, Xu L, He L, et al. Selenium nanoparticles regulates selenoprotein to boost cytokine-induced killer cells-based cancer immunotherapy[J]. Nano Today, 2020, 35:100975.
[68] Nair D, Radestad E, Khalkar P, et al. Methylseleninic acid sensitizes ovarian cancer cells to T-cell mediated killing by decreasing PDL1 and VEGF levels[J]. Frontiers in Oncology, 2018, 8:407.
[69] 霍佳桃, 文海若, 吕建军, 等. 药物毒理学研究中体外替代试验研究现状及展望[J]. 药物评价研究, 2018, 41(12):2133-2141.
[70] Zhang Z H, Du Y X, Liu T, et al. Systematic acute and subchronic toxicity evaluation of polysaccharide-protein complex functionalized selenium nanoparticles with anticancer potency[J]. Biomaterials Science, 2019, 7(12):5112-5123.
Outlines

/