Papers

Quantitative classification of global terrorist attacks and prediction of anti-terrorist situation: Based on projection pursuit model and grey metabolic model

  • DENG Shicheng ,
  • QIN Yao ,
  • XU Jifang ,
  • GU Yiwei
Expand
  • 1. Business School, East China University of Science and Technology, Shanghai 200237, China;
    2. Chongqing Statistics Bureau, Chongqing 401147, China;
    3. School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China;
    4. Big Data and Intelligence Engineering School, Chongqing College of International Business and Economics, Chongqing 401520, China;
    5. Leshan Commercial Bank, Leshan 614000, China

Received date: 2019-08-01

  Revised date: 2020-06-22

  Online published: 2021-10-09

Abstract

The terrorist attacks pose a serious threat to the regional peace and stability and their spread to all parts of the world is accelerating. Based on the data of terrorist attacks from 1998 through 2017 in the Global Terrorist Database (GTD), this paper quantitatively classifies the damage degrees of terrorist attacks based on the Projection Pursuit Model (PPM) and the Grey Metabolic Model (GMM), and predicts the spread trend of the global terrorist activities in the next five years. Based on the quantified damage degrees of terrorist attacks, the terrorist attacks can be divided into five levels, with the first level as the "9·11" incident in New York, USA. Terrorist activities have gradually spread from key areas to all parts of the world, but the total amount of the global terrorist attacks is in a downward trend in the next five years. The Middle East, Africa and other regions will still be the areas of a high incidence of international terrorist activities in the next five years. Africa will become a "disaster area" of terrorism, while Southeast Asia and South Asia will become new active areas of terrorism.

Cite this article

DENG Shicheng , QIN Yao , XU Jifang , GU Yiwei . Quantitative classification of global terrorist attacks and prediction of anti-terrorist situation: Based on projection pursuit model and grey metabolic model[J]. Science & Technology Review, 2021 , 39(18) : 111 -121 . DOI: 10.3981/j.issn.1000-7857.2021.18.015

References

[1] 柴瑞瑞, 刘德海, 陈静锋. 恐怖袭击事件的时空差异特征分析及内生性VAR模型[J]. 中国管理科学, 2016, 24(增刊1):281-288.
[2] 郝蒙蒙, 陈帅, 江东, 等. 中南半岛恐怖袭击事件时空演变特征分析[J]. 科技导报, 2018, 36(3):62-69.
[3] 付举磊, 肖进, 孙多勇, 等. 基于社会网络的恐怖活动时空特征分析[J]. 系统工程理论与实践, 2015, 35(9):2324-2332.
[4] 孙柠. 基于模糊综合评价法的涉恐风险评估模型研究[J]. 应用科技, 2018, 45(4):69-75.
[5] 魏静, 王菊韵, 于华. 基于多模块贝叶斯网络的恐怖袭击威胁评估[J]. 中国科学院大学学报, 2015, 32(2):264-272.
[6] 刘明辉. 基于K-means聚类分析的民航系统恐怖主义风险评估[J]. 数据分析与知识发现, 2018, 2(10):21-26.
[7] 赵芸, 赵敏. 采用深度置信网络的恐怖袭击事件量化分级研究[J]. 软件导刊, 2019(7):173-176.
[8] 肖卫东, 周城, 孙扬, 等. Parallel Sets的改进及其在全球恐怖袭击数据分析中的应用[J]. 国防科技大学学报, 2011, 33(1):115-119.
[9] 苏屹, 于跃奇. 基于加速遗传算法投影寻踪模型的企业可持续发展能力评价研究[J]. 运筹与管理, 2018, 27(5):130-139.
[10] 邓楚雄, 谢炳庚, 李晓青, 等. 基于投影寻踪法的长株潭城市群地区耕地集约利用评价[J]. 地理研究, 2013, 32(11):2000-2008.
[11] 李朋林, 唐珺. 基于投影寻踪的"新一线"城市人才环境评价研究[J]. 科技管理研究, 2019, 39(9):69-75.
[12] 张家栋. 世界恐怖主义的主要特征与发展趋势[J]. 国际观察, 2011(5):8-15.
[13] 吴凤平, 程铁军. 基于改进的灰色定权聚类分析的突发事件分级研究[J]. 中国管理科学, 2013, 21(增刊1):110-113.
[14] 王向爱, 庄元强, 谢为顿, 等. 对恐怖袭击事件记录数据的量化分析与研究[J]. 经济数学, 2019, 36(3):95-103.
[15] 李震巍, 金国鹏, 汪平, 等. 对恐怖袭击事件记录数据的量化分析[J]. 数学的实践与认识, 2019, 49(16):139-146.
[16] 刘思峰, 谢乃明. 灰色系统理论及其应用[M]. 4版. 北京:科学出版社, 2008.
[17] 刘思峰, 邓聚龙. GM(1,1)模型的适用范围[J]. 系统工程理论与实践, 2000(5):121-124.
[18] 张朝飞, 罗建军, 徐兵华, 等. 基于灰色理论的新陈代谢自适应多参数预测方法[J]. 上海交通大学学报, 2017, 51(8):970-976.
[19] 解瑞金, 胡运红, 康莉娜. 新陈代谢灰色模型在中国碳排放量预测中的应用[J]. 数学的实践与认识, 2016, 46(11):18-26.
[20] 蔡军. 灰色新陈代谢模型在滑坡动态监测中的应用[J]. 重庆交通大学学报(自然科学版), 2014, 33(5):92-94.
Outlines

/