[1] 王德明. 煤矿热动力灾害及特性[J]. 煤炭学报, 2018, 43(1): 137-142.
[2] 秦波涛, 张雷林, 王德明, 等. 采空区煤自燃引爆瓦斯的机理及控制技术[J]. 煤炭学报, 2009, 34(12): 1655-1659.
[3] 李林, 陈军朝, 姜德义, 等. 煤自燃全过程高温区域及指标气体时空变化实验研究[J]. 煤炭学报, 2016, 41(2):444-450.
[4] 金永飞, 郭军, 文虎, 等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报, 2015, 40(3): 596-602.
[5] Yan H, Chen G N, Zhou Y G, et al. Primary study of temperature distribution measurement in stored grain based on acoustic tomography[J]. Experimental Thermal and Flu⁃id Science, 2012, 42: 55-63.
[6] 安连锁, 冯强, 沈国清, 等. 电站锅炉管阵列内声传播特性及时延值测量[J]. 动力工程学报, 2017, 37(1): 13-20.
[7] 程晓舫, 王瑞芳, 张维农, 等 . 火灾探测的原理和方法(上)[J]. 中国安全科学学报, 1999(1): 27-32.
[8] 束学来, 郑炳旭, 郭子如, 等. 测温方法的比较及其在煤矿火区爆破中的运用[C]//中国矿业科技文汇—2014, 2014: 449-451.
[9] 徐静, 贺红平, 王栋 . 膨胀式温度计(玻璃棒)分类及误差来源浅析[J]. 城市建设理论研究(电子版), 2017, doi: 10.19569/j.cnki.cn119313/tu.201711236.
[10] 崔晓荣, 林谋金, 束学来. 露天煤矿火区爆破高温孔温度测量与分析[J]. 煤炭技术, 2015, 34(11): 303-305.
[11] 许建朝 . 谈谈热电偶温度计[J]. 益阳师专学报, 1996(6): 113-115.
[12] Guo J, Wen H, Zheng X Z, et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Process Safety and Environmental Protection, 2019, 126: 223-231.
[13] Zhang Y T, Shix Q, Li Y Q, et al. Characteristics of carbon monoxide production and oxidation kinetics during the decaying process of coal spontaneous combustion[J]. The Canadian Journal of Chemical Enginering, 2018, 96(8): 17524761.
[14] Liang Y, Zhang J, Wang L, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 208-222.
[15] Zhou B, Wu J, Wang J. Surface-based radon detection to identify spontaneous combustion areas in small aban⁃
doned coal mine gobs: Case study of a small coal mine in China[J]. Process Safety and Environmental Protection, 2018, 119: 223-232.
[16] 文虎, 程小蛟, 许延辉, 等 . 松散煤体自然发火过程氡析出及运移规律[J]. 煤炭学报, 2019, 44(9): 2816-2823.
[17] 郭军, 李帅, 蔡国斌, 等 . 采空区隐蔽火源探测及声学法煤温感知新技术探讨[J]. 中国安全生产科学技术, 2021, 17(6): 5-11.
[18] Chen C, Yang K, Duan R, et al. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension[J]. Applied Ocean Research, 2017, 68: 1-10.
[19] Katherine F W, Shane L, Karim G S, et al. Monitoring deep-ocean temperatures using acoustic ambient noise[J]. Geophysical Research Letters, 2015, 42(8): 2878-2884.
[20] Zhang S P, Shen G Q, An L S. Online monitoring of furnace exit gas temperature in power plants[J]. Applied Thermal Engineering, 2019, 147: 917-926.
[21] 东桥, 郭敏 . 基于萤火虫算法的温度场重建[J]. 计算机工程与科学, 2018, 40(1): 159-164.
[22] Liu X, Cai X, Guo Q, et al. Study of acoustic wave propagation in micro- and nanochannels[J]. Wave Motion, 2018, 76: 51-60.
[23] 白利平, 杜建国, 刘巍, 等 . 高温高压下辉长岩纵波速度和电导率实验研究[J]. 中国科学(D 辑:地球科学), 2002(11): 959-968.
[24] 周莉, 李德建, 王春光 . 温度对深部砂岩波速的影响[J]. 黑龙江科技学院学报, 2007, 17(3): 178-180.
[25] Yuki M, Masahiro I, Masaru T, et al. Simultaneous measurements of compressional wave and shear wave velocities, Poisson's ratio, and Vp/Vs under deep crustal pressure and temperature conditions: Example of silicified pelitic schist from Ryoke Belt, Southwest Japan[J]. Island Arc, 2010, 19(1): 30-39.
[26] 房春慧, 李继龙, 姜纪沂, 等 . 压力和温度对致密砂岩纵波速度影响的实验研究[J]. 地球物理学进展, 2020, 35(5): 1770-1776.
[27] 汤红伟, 程建远, 王世东. 深层煤矿床的煤岩样物性测试结果与分析[J]. 中国煤炭, 2009, 35(9): 75-78+81.
[28] 李盟 . 煤体超声波速度影响因素的实验研究[D]. 郑州:河南理工大学, 2014.
[29] Komijani M, Gracie R, Sarvaramini E. Simulation of induced acoustic emission in fractured porous media[J]. Engineering Fracture Mechanics, 2019, 210: 113-131.
[30] Cassiede M, Shaw J M. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors[J]. Review of Scientific Instruments, 2015, 86(4): 0449021-04490213.
[31] 郭淼, 胡永辉, 闫勇, 等 . 基于互相关的堆积物料中声波传播时间测量[J]. 电子测量与仪器学报, 2018, 32(12): 1-9.
[32] Guo M, Yan Y, Hu Y H. Temperature measurement of stored biomass using low- frequency acoustic waves and correlation signal processing techniques[J]. Fuel, 2018, 227: 89-98.
[33] 朱军, 祝捍皓, 屈科, 等 . 声速分布对浅海低频声场空间相关的影响研究[J]. 声学技术, 2019, 38(4): 376-381.
[34] Liszka L. Long-distance propagation of infrasound from artificial sources,Journ[J]. Acoustical Society of America, 1974, 56(5): 23-29.
[35] Liszka L. Cognitive information processing in space physics and astrophysics[M]. Tucson: Pachart Publishing House, 2003.
[36] 范恒. 声发射监测技术运用于火灾探测初探[J]. 中国公共安全(学术版), 2009(Z1): 108-111.
[37] 荣建忠, 姚卫, 高伟, 等 . 基于多特征融合技术的火焰视频探测方法[J]. 燃烧科学与技术, 2013, 19(3): 227-233.
[38] 蒋静学 . 基于燃烧音识别的火灾探测系统的研究与设计[D]. 上海: 东华大学, 2012.
[39] 蒋静学, 官洪运, 范泳文, 等 . 时频分析方法在燃烧音频信号分析中的应用研究[J]. 现代电子技术,2011, 34(23): 67-69.
[40] 林运通, 谢献强, 黄平, 等 . 输电线路沿线林火监测技术综述[J]. 林业与环境科学, 2019, 35(5): 122-126.
[41] 王瑞芳, 程晓舫 . 燃烧音火灾探测器[J]. 国际消防, 1997(8): 34-37.
[42] Guan H Y, Fang S, Jiang J X. The detection and analysis of the combustion audio[C]. Proceedings of the 2nd International Conference on Science and Social Research (ICSSR 2013), Beijing: Atlantis Press, 2013.