一类具双时滞的食饵-捕食系统的Hopf分支分析

徐秀艳

科技导报 ›› 2011, Vol. 29 ›› Issue (25) : 75-79.

PDF(786 KB)
PDF(786 KB)
科技导报 ›› 2011, Vol. 29 ›› Issue (25) : 75-79. DOI: 10.3981/j.issn.1000-7857.2011.25.012
研究论文

一类具双时滞的食饵-捕食系统的Hopf分支分析

作者信息 -
黑龙江科技学院理学院,哈尔滨 150027

Hopf Bifurcation Analysis on a Predator-prey System with Double Time Delays

Author information -
Department of Mathematics, Heilongjiang Institute of Science and Technology, Harbin 150027, China

摘要

讨论了具有追捕时滞(捕食者的成熟时滞)τ1、两种群生长时滞τ2的双时滞食饵-捕食系统稳定性,确定各时滞取值范围对系统中食饵与捕食者数量的影响.首先,分别以追捕时滞(捕食者的成熟时滞)τ1、两种群的生长时滞τ2为参数,通过对系统线性化方程特征根的分布分析,找到特征根具严格负实部的时滞取值范围,得到系统平衡点的稳定性条件,确定了系统平衡点的线性稳定性区域.其次,讨论系统追捕时滞(捕食者的成熟时滞τ1)在稳定区域内时,以两种群的生长时滞τ2为参数时系统的稳定性,及系统Hopf分支的存在条件,利用中心流形理论和规范型方法计算了系统Hopf分支方向和分支周期解的稳定性,得到了系统参数的取值范围.

Abstract

A kind of predator-prey system with double time delays i.e. the hunting delay (the time delay of the predator maturation) τ1 and the growth time delay of the predator and the prey τ2 is investigated. Stability analysis on the equilibrium point of the system is carried out, and the ranges of the time delays are determined. Thus, the impact of the predator and the prey is in-depth studied. First of all, the hunting delay (the time delay of the predator maturation) τ1 and the growth time delay of the predator and the prey τ2 are taken as parameters, respectively. The range of the roots with a strictly negative real part is found by analyzing the distribution of characteristic roots for the linearized equation. The condition to ensure the stability of the zero solution of the system and its stable domain are decided. Secondly, when the hunting delay τ1 is in the stable region, the stability and the existence of Hopf bifurcation are given. Then the Hopf bifurcation is discussed by using the center manifold theory and normal form method introduced by Hassard and Kazarinoff. Both direction and stability of the Hopf bifurcation are considered, and the ranges for the system parameters are obtained.

关键词

食饵-捕食系统 / 时滞 / Hopf分支 / 中心流形 / 规范型

Key words

predator-prey system / time delay / Hopf bifurcation / center manifold / normal form

引用本文

导出引用
徐秀艳. 一类具双时滞的食饵-捕食系统的Hopf分支分析[J]. 科技导报, 2011, 29(25): 75-79 https://doi.org/10.3981/j.issn.1000-7857.2011.25.012
XU Xiuyan. Hopf Bifurcation Analysis on a Predator-prey System with Double Time Delays[J]. Science & Technology Review, 2011, 29(25): 75-79 https://doi.org/10.3981/j.issn.1000-7857.2011.25.012
中图分类号: O175.13   
PDF(786 KB)

76

Accesses

0

Citation

Detail

段落导航
相关文章

/