为解决司家营铁矿超大能力超细全尾砂超长距离管道自流输送难题, 在研究超细全尾砂管道自流输送、骨料颗粒沉降堵管及管道沿程阻力损失特性的基础上, 利用Fluent 软件对超细全尾砂超长距离大管径的自流输送特性进行分析。结果表明:超细粒径全尾砂易于悬浮, 大管径输送可有效降低沿程阻力损失。工作流速为2.95 m·s-1、管道内径为155 mm 的超细全尾砂浆体的垂直脉动速度分量Sv=0.24 cm·s-1远大于尾砂的干涉沉降速度0.034 cm·s-1, 最大允许充填倍线Nmax高达10.6, 充填料浆可均匀悬浮顺利自流至采空区。
Abstract
To solve the problem of poor self-flowing performance of the large capacity super fine tailing slurry in overlength pipeline transportation, this paper studies the self-flowing transportation, the hindered settling and the frictional resistance loss properties of the super fine tailing slurry. A pipeline model is built and the evaluation is made through the simulation software Fluent. It is revealed that the super fine tailings are easy to suspend and the large-tube pipeline transportation is beneficial to reducing the frictional resistance loss. With the working flow rate of 2.95 m·s-1, the pipeline's inner diameter of 155 mm, the vertical component of the fluctuating velocity reaches 0.24 m·s-1, which is far greater than the hindered settling rate of 0.034 m·s-1, and the maximum stowing gradient is up to 10.6.
关键词
超大能力充填系统 /
超细全尾砂 /
超长距离 /
自流输送
{{custom_keyword}} /
Key words
large capacity backfill system /
super fine tailings /
overlength pipelines /
self-flowing transportation
{{custom_keyword}} /
中图分类号:
X753
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王春来, 吴爱祥, 刘晓辉, 等. 深井开采微震活动容量维Df变化特征[J]. 北京科技大学学报, 2010, 32(11): 1379-1382. Wang Chunlai, Wu Aixiang, Liu Xiaohui, et al. Variation characteristics of capacity dimension Df with micro seismicity in deep mining[J]. Journal of University of Science and Technology, 2010, 32(11): 1379-1382.
[2] 梁刚. 司家营铁矿开发对地下水环境扰动评价与保护方法研究[D]. 北 京: 中国矿业大学, 2012. Liang Gang. Research on disturbance assessment and protection methods for groundwater environment during Sijiaying Iron Mining development [D]. Beijing: China University of Mining and Technology, 2012.
[3] 王新民, 古德生, 张钦礼. 深井矿山充填理论与管道输送技术[M]. 长 沙: 中南大学出版社, 2010. Wang Xinmin, Gu Desheng, Zhang Qinli. Theory and technology of deep mine backfilling[M]. Changsha: Central South University Press, 2010.
[4] 耿俊俊. 龙首矿深部充填系统可靠性及扩能技术方案研究[D]. 长沙: 中南大学, 2009. Geng Junjun. Study of Longshou mine deep piping reliability and expansion technique project[D]. Changsha: Central South University, 2009.
[5] 周旭, 王佩勋. 大倍线管道自流输送胶结充填技术[J]. 金属矿山, 2011, 8: 25-29. Zhou Xu, Wang Peixun. Research on the gravity-flowed convey cemented filling technology with great times line pipeline[J]. Metal Mine, 2011, 8: 25-29.
[6] 刘丰韬, 丁剑锋, 陈国平, 等. 深井长距离大倍线高浓度自流充填技术 研究[J]. 金属矿山, 2014, 2: 40-44. Liu Fengtao, Ding Jianfeng, Chen Guoping, et al. Study on the highdensity gravity-flow backfilling technology of deep-well long-distance with large line[J]. Metal Mine, 2014, 2: 40-44.
[7] 王新民, 张德明, 张钦礼, 等. 基于FLOW-3D软件的深井膏体管道自 流输送性能[J]. 中南大学学报: 自然科学版, 2011, 42(7): 2101-2107. Wang Xinmin, Zhang Deming, Zhang Qinli, et al. Pipeline self-flowing transportation property of paste based on FLOW- 3D software in deep mine[J]. Journal of Central South University: Nature Science Edition, 2011, 42(7): 2101-2107.
[8] Fu J, Yang Y, Chen P, et al. Characteristics of helical flow in slim holes and calculation of hydraulics for ultra-deep wells[J]. Petroleum Science, 2010, 7(2): 226-231.
[9] 王新民, 贺严, 陈秋松. 基于Fluent的分级尾砂料浆满管流输送技术 [J]. 科技导报, 2014, 32(1): 55-60. Wang Xinmin, He Yan, Chen Qiusong. Full pipeline flowing transportation technology of classified tailings based on the Fluent software[J]. Science & Technology Review, 2014, 32(1): 55-60.
[10] 刘晓辉, 吴爱祥, 王洪江, 等. 深井矿山充填满管输送理论及应用[J]. 北京科技大学学报, 2013, 35(9): 1113-1118. Liu Xiaohui, Wu Aixiang, Wang Hongjiang, et al. Full-flow transport theory and its application in deep mine backfilling[J]. Journal of University of Science and Technology, 2013, 35(9): 1113-1118.
[11] Kashiwaya K, Noumachi T, Hiroyoshi N, et al. Effect of particle shape on hydrocyclone classification[J]. Powder Technology, 2012, 226: 147-156.
[12] Chepurov A I, Sonin V M, Kirdyashkin A A, et al. Use of a pressless multianvil high-pressure split-sphere apparatus to measure the silicate melt viscosity[J]. Journal of Applied Mechanics and Technical Physics, 2009, 50(5): 826-830.
[13] 焦华喆, 王洪江, 吴爱祥, 等. 全尾砂絮凝沉降规律及其机理[J]. 北京 科技大学学报, 2010, 32(6): 702-707. Jiao Huazhe, Wang Hongjiang, Wu Aixiang, et al. Rule and mechanism of flocculation sedimentation of unclassified tailings[J]. Journal of University of Science and Technology, 2010, 32(6): 702-707.
[14] Mishra D P, Das S K. Comprehensive characterization of pond ash and pond ash slurries for hydraulic stowing in underground coal mines[J]. Particulate Science and Technology, 2014, 32(5): 456-465.
[15] 吴迪, 蔡嗣经, 杨威, 等. 基于CFD的充填管道固液两相流输送模拟 及试验[J]. 中国有色金属学报, 2012, 22(7): 2133-2140. Wu Di, Cai Sijing, Yang Wei, et al. Simulation and experiment of backfilling pipeline transportation of solid-liquid two-phase flow based on CFD[J]. Chinese Journal of Nonferrous Metals, 2012, 22(7): 2133- 2140.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家科技支撑计划项目(2008BAB32B03)
{{custom_fund}}