从长期受对硝基酚(para-nitrophenol,PNP)污染的土壤中,分离到一株能够降解对硝基酚并以其作为唯一碳源和氮源生长的菌株,命名为PN-1。经16S rDNA 序列分析,初步鉴定该菌株为假单胞菌(Pseudomona)。通过研究其对PNP 的降解、重金属以及抗生素抗性、植物促生等特性,得到如下结果:该菌株对PNP 的最大耐受质量浓度为200 mg/L,具有卡那霉素和氯霉素抗性,对4 种重金属Cd2+、Pb2+、Zn2+和Cr6+的最低抑制浓度(minimum inhibitory concentration,MIC)分别为700、500、800 和100 mg/L,同时具有产吲哚乙酸(IAA)和铁载体、1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性以及溶磷能力。通过用荧光蛋白标记后能在土壤中正常存活,具有能与植物联合修复PNP 污染土壤的潜力,有较好的使用前景。
Abstract
A para-nitrophenol (PNP) degrading strain, named PN-1, was isolated from the PNP-contaminated soil. PN-1 utilized PNP as the sole carbon and nitrogen source during the cultivation. Based on the result of 16S rDNA gene sequence, the strain was preliminarily designated as Pseudomona. Experiments were carried out to investigate the degradation of PNP, heavy metal, antibiotic, plant growthpromoting (PGP) properties and GFP-tagging of PN-1. The results showed that the maximum tolerant dose of TM to PNP was 200 mg/L, and the MICs for the following four heavy metals were 700 mg/L for Cd2+, 500 mg/L for Pb2+, 800 mg/L for Zn2+, and 100 mg/L for Cr6+. What is more, PN-1 could grow in media with chloromycetin and ampicillin. PGP traits of PN-1 included IAA, siderophore production, ACC deaminase activity and phosphate solubilizing activity. GFP-tagged PN-1 could survive and bioremediate PNP-contaminated soil with plants.
关键词
对硝基酚 /
重金属 /
抗生素 /
植物促生特性 /
荧光蛋白标记
{{custom_keyword}} /
Key words
paranitrophenol /
heavy metal /
antibiotic /
plant growth promotion properties /
GFP-tagging
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Keither L, Telliard W. Special report: Priority pollutants: I-a perspec-tive view[J]. Environmental Science Technology, 1979, 13(4): 416-423.
[2] 肖子瑞, 周寅飞. 超声波技术在含酚有机废水处理中的应用[J]. 河南化工, 2011, 28(11/12): 22-24. Xiao Zirui, Zhou Yinfei. Ultrasound technology for degradation phenol in organic wastewater treatment[J]. Henan Chemical Industry, 2011, 28 (11/12): 22-24.
[3] 赵小波, 陈晓昀, 王京平, 等. 工业废水中氯苯酚类化合物的处理技术研究[J]. 广东化工, 2010, 37(3): 145-146. Zhao Xiaobo, Chen Xiaoyun, Wang Jingping, et al. Study on the treat-ment of chloropenolic compounds in industrial wastewater[J]. Guang-dong Chemical Industry, 2010, 37(3): 145-146.
[4] 丛俏, 曲蛟. 高级氧化技术处理含酚炼油废水的研究[J]. 石油炼制与化工, 2011, 42(6): 103-107. Cong Qiao, Qu Jiao. Degradation of refining wastewater containing phe-nol with super oxidation method[J]. Petroleum Processing and Petro-chemicals, 2011, 42(6): 103-107.
[5] 周立, 钟宏, 李雪萍. 气液流化床内氧化法处理含酚废水[J]. 中南大学学报: 自然科学版, 2011, 42(11): 3284-3288. Zhou Li, Zhong Hong, Li Xueping. Phenolic wastewater treatment by fenton reagent in gas-liquid fluidized bed reactor[J]. Journal of Centyal South University: Science and Technology, 2011, 42(11): 3284-3288.
[6] 张雯, 苏静静, 曹丽琴. 苯酚降解菌的筛选及其降解性能研究[J]. 环境科学与管理, 2013, 38(2): 89-94. Zhang Wen, Su Jingjing, Cao Liqin. Study on separation and degration characteristics of phenol degrading bacteria[J]. Environmental Science and Management, 2013, 38(2): 89-94.
[7] 张清, 温玉娟, 任何军, 等. 一株对硝基苯酚降解菌的筛选鉴定及其降解特性[J]. 环境污染与防治, 2013, 35(2): 17-21. Zhang Qing, Wen Yujuan, Ren Hejun, et al. Isolation and characteriza-tion of p-nitrophenol degrading bacteria and the degradation character-istic[J]. Environmental Pollution & Control, 2013, 35(2): 17-21.
[8] 陈佛保, 柏珺, 林庆祺, 等. 植物根际促生菌(PGPR)对缓解水稻受土壤锌胁迫的作用[J]. 农业环境科学学报, 2012, 31(1): 67-74. Chen Fobao, Bai Jun, Lin Qingqi, et al. Application of plant growthpromoting rhizobacteria (PGPR) for reducing zinc on paddy rice[J]. Jour-nal of Agro-Environment Science, 2012, 31(1): 67-74.
[9] 胡江春, 薛德林, 马成新, 等. 植物根际促生菌(PGPR) 的研究与应用前景[J]. 应用生态学报, 2004, 15(10): 1963-1966. Hu Jiangchun, Xue Delin, Ma Chengxin, et al. Research advances in plant growth promoting rhizobacteria and its application prospects[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1963-1966.
[10] He H D, Ye Z H, Yang D J, et al. Characterization of endophytic Rah-nella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus[J]. Chemosphere, 2013, 90(6): 1960-1965.
[11] Bricetal J M, Bostock R M, Silverstone S E. Rapid in situ assay for in-doleacetic acid production by bacteria immobilized on a Nitrocellulose membrane[J]. Apple Environ Microbiol, 1991, 57(2): 535-539.
[12] Datta C, Basu P S. Indole acetic acid production by a Rhizobium spe-cies from root nodules of a leguminous shrub, Cajanus cajan[J]. Micro-biological Research, 2000, 155(2): 123-127.
[13] Skerman V B D. 1:A guide to the identification of the Genera of Bacte-ria with methods and digest of generic characteristics[M]. Baltimore: Williams and Wilkins Co, 1959: 189-191.
[14] Schwyn B, Neilands J B. Universal chemical assay for the detection and determination of siderophores[J]. Analytical Chemistry, 1987, 160 (1): 47-56.
[15] Watanabe F S, Olsen S R. Test of an ascorbic acid method for deter-mining phosphorous in water and NaHCO3 extracts from soil[J]. Soil Science Society of America Journal, 1965, 29(6): 677-678.
[16] Belimov A A, Safronova V I, Sergrveva T A, et al. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1 -carboxylate deaminase[J]. Canadi-an Journal of Microbiology, 2001, 47(7): 242-252.
[17] 莫才清, 覃雅丽, 周俊初, 等. 应用发光酶基因对快生型大豆根瘤菌 HN01结瘤作用进行检测[J]. 微生物学报, 1998, 38(3): 213-218. Mo Caiqing, Qin Yali, Zhou Junchu, et al. Luxab genes as marker for detecting rhizobium fredii HN01 nodulation functions[J]. Acta Microbi-ologica Sinica, 1998, 38(3): 213-218.
[18] Wilson K J, Sessitsch A, Corbo J C, et al. Beta-Glucuronidase(GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria[J]. Microbiology, 1995, 141(7): 1691-1705.
[19] 万年升, 顾继东, 郝伏勤, 等. Rhodococcus sp. Ns 对硝基苯酚的好氧生物降解[J]. 环境科学, 2007, 28(2): 431-435. Wan Niansheng, Gu Jidong, Hao Fuqin, et al. Degradation of p-nitro-phenol by a mangrove bacterial Rhodococcus sp. Ns[J]. Environmental Science, 2007, 28(2): 431-435.
[20] 樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736. Fan Ting, Ye Wenling, Chen Haiyan, et al. Review on contamination and remediation technology of heavy mental in agricultural soil[J]. Ecology and Environmental Sciences, 2013, 22(10): 1727-1736.
[21] 陈力玉. 基于三亲本杂交的荧光标记根瘤菌的构建及其稳定性检测研究[D]. 兰州: 甘肃农业大学, 2013. Chen Liyu. Establishment and stability test of fluorescence marked rhi-zobium based on triparental mating[D]. Lanzhou: Gansu Agricultural University, 2013.
[22] Xiong H M, Hua Z G, Zhang Y, et al. Survival of GFP-tagged Rhodo-coccus sp. D310-1 in chlorimuron-ethyl-contaminated soil and its ef-fects on the indigenous microbial community[J]. Journal of Hazardous Materials, 2013, 252-253: 347-354.
[23] 胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(6/7): 1161-1167. Hu Chanjuan, Liu Guohua, Wu Yaqiong. A review of soil microbial biomass and diversity measurements[J]. Ecology and Environmental Sciences, 2011, 20(6/7): 1161-1167.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目(20771030,20671025)
{{custom_fund}}