新冠肺炎疫情传播模型及防控干预措施的因果分析评估

游光荣, 游翰霖, 赵得智, 廉振宇

科技导报 ›› 2020, Vol. 38 ›› Issue (6) : 90-96.

PDF(2739 KB)
PDF(2739 KB)
科技导报 ›› 2020, Vol. 38 ›› Issue (6) : 90-96. DOI: 10.3981/j.issn.1000-7857.2020.06.013
研究论文

新冠肺炎疫情传播模型及防控干预措施的因果分析评估

作者信息 -
1. 军事科学院评估论证研究中心, 北京 100091;
2. 军事科学院研究生院, 北京 100091
作者简介:
游光荣,研究员,研究方向为军事评估、管理科学与工程,电子信箱:13910742660@163.com

Dynamic model of COVID-19 transmission and assessment of control interventions based on causal analysis

Author information -
1. Center for Assessment and Demonstration Research, Academy of Military Science, Beijing 100091, China;
2. School of Graduate, Academy of Military Science, Beijing 100091, China

摘要

利用修正后的单一群体传染病SEIR模型,对新型冠状病毒肺炎疫情在国内的传播趋势进行建模,模型较好地拟合了已发生情况并预测了疫情发展;基于修正后的SEIR模型,开展反事实推理,定量评估了武汉推后采取防控干预措施对国内疫情带来的影响。结果表明:基于建模仿真和因果推断方法,可以对重大突发公共卫生事件的决策和执行进行模拟与反演,提高各级政府应对重大突发公共卫生事件的社会治理能力。

Abstract

A modified SEIR model of single-population infectious disease (SEIRD) is proposed to investigate the transmission trend of coronavirus disease 2019 (COVID-19) in Chinese Mainland, whose outbreak originated in Wuhan, Hubei Province. The SEIRD model preforms well in fitting training data and can be used to predict the future transmission trend. The counterfactual inference is applied to assess the control interventions based on SEIRD model. Using the quantitative analysis results, the effect on COVID-19 transmission can be assessed systematically under the adjustable control interventions, such as delaying the Wuhan Lockdown. Finally, the conclusions are summarized:the assessment approach combining modeling & simulation and causal inference is applicable in the bidirectional deduction study of decision-making and implementation in major public health emergencies (MPHE), which contributes to improve the social governance capabilities handling with MPHE of the governments in each level.

关键词

新冠肺炎 / SEIR模型 / 因果分析 / 反事实推理

Key words

COVID-19 / SEIR models / causal analysis / counterfactual inference

引用本文

导出引用
游光荣, 游翰霖, 赵得智, 廉振宇. 新冠肺炎疫情传播模型及防控干预措施的因果分析评估[J]. 科技导报, 2020, 38(6): 90-96 https://doi.org/10.3981/j.issn.1000-7857.2020.06.013
YOU Guangrong, YOU Hanlin, ZHAO Dezhi, LIAN Zhenyu. Dynamic model of COVID-19 transmission and assessment of control interventions based on causal analysis[J]. Science & Technology Review, 2020, 38(6): 90-96 https://doi.org/10.3981/j.issn.1000-7857.2020.06.013

参考文献

[1] 国家卫生健康委员会. 疫情防控动态[EB/OL]. (2020-03-26). http://www.nhc.gov.cn.
[2] 中华预防医学会新型冠状病毒肺炎防控专家组. 新型冠状病毒肺炎流行病学特征的最新认识[J]. 中华流行病学杂志, 2020, 41(2):139-144.
[3] 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志, 2020, 41(2):145-151.
[4] Yu W, Tang G, Zhang L, et.al. Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data[J]. ChinaXiv 2020, doi:10.12074/202002.00033.
[5] Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2[J]. National Science Review, 2020, doi:10.1093/nsr/nwaa036.
[6] Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579:270-273.
[7] Anderson R M, Anderson B, May R M. Infectious diseases of humans:Dynamics and control[M]. Oxford:Oxford University Press, 1992.
[8] 范如国, 王奕博, 罗明, 等. 基于SEIR的新型肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, doi:10.12178/1001-0548.2020029.
[9] 魏永越, 卢珍珍, 杜志成, 等. 基于改进的SEIR+CAQ传染病动力学模型进行新型冠状病毒肺炎疫情趋势分析[J]. 中华流行病学杂志, 2020, 41(4):470-475.
[10] Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3), 165-174.

基金

中国科学院学部咨询项目(2020-ZW03-A-013)
PDF(2739 KB)

166

Accesses

0

Citation

Detail

段落导航
相关文章

/