Research progress of industrial robot model-based error parameter calibration technology
CUI Zhengjie1, LIU Houcai1, KANG Huimin1, ZUO Guocai2, HU Shengqiao1, LIU Zhicheng1
1. College of Mechanical and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
2. Hunan Software Vocational and Technical University, Xiangtan 411100, China
Abstract:This paper reviews the research progress of model-based industrial robot error parameter calibration technology to improve the end-effector control accuracy, and summarizes the key problems when industrial robot is applied to high-precision machining and manufacturing, such as incomplete error parameters, high calibration cost and calibration accuracy. Moreover, the paper analyzes the modeling method of error parameter calibration model, end-effector's pose measurement technology, error parameter identification technology and error compensation technology. And the main difficulties of model-based error parameter model calibration technology in dealing with complex calibration tasks are discussed Finally, aimed at some existing problems, a method to efficiently obtain and process the measured error data is proposed and a feasible development direction is also prospected.
[1] International Federation of Robotics. Robot History[EB/ OL]. [2022-04-12]. https://ifr.org/robot-history.
[2] 田涛, 邓双城, 杨朝岚, 等. 工业机器人的研究现状与发展趋势[J]. 新技术新工艺, 2015(3): 92-94.
[3] Asada H, Kanade T. Design of direct-drive mechanical arms[J]. Journal of Vibration and Acoustics, 1983, 105(3): 312-316.
[4] 韩峰涛. 工业机器人技术研究与发展综述[J]. 机器人技术与应用, 2021(5): 23-26.
[5] 陈宵燕. 工业机器人多模式标定及刚柔耦合误差补偿方法研究[D]. 无锡: 江南大学, 2020.
[6] 田威, 焦嘉琛, 李波, 等. 航空航天制造机器人高精度作业装备与技术综述[J]. 南京航空航天大学学报, 2020, 52(3): 341-352.
[7] 郑法颖. 基于二级反馈的机器人精度补偿技术及应用[D]. 南京: 南京航空航天大学, 2019.
[8] 岳超. 工业机器人加工系统刚度特性分析及铣削稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[9] 陈钦韬, 殷参, 张加波, 等. 面向铣削任务的工业机器人刚度位姿优化[J]. 机器人, 2021, 43(1): 90-100.
[10] 丰飞, 杨海涛, 唐丽娜, 等. 大尺度构件重载高精加工机器人本体设计与性能提升关键技术[J]. 中国机械工程, 2021, 32(19): 2269-2287.
[11] Devlieg R. High-accuracy robotic drilling/milling of 737 inboard flaps[J]. SAE International Journal of Aerospace, 2011, 4(2): 1373-1379.
[12] Xu X H, Zhu D H, Wang J S, et al. Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere[J]. Robotics and Computer-Integrated Manufacturing, 2018, 51: 189-201.
[13] Jiao J C, Tian W, Liao W H, et al. Processing configuration off-line optimization for functionally redundant robotic drilling tasks[J]. Robotics and Autonomous Systems, 2018, 110: 112-123.
[14] 曾远帆, 田威, 廖文和. 面向飞机自动钻铆系统的工业机器人精度补偿技术[J]. 航空制造技术, 2016(18): 46- 52.
[15] Yin S B, Ren Y J, Zhu J G, et al. A vision-based selfcalibration method for robotic visual inspection systems [J]. Sensors, 2013, 13(12): 16565-16582.
[16] 杨守瑞, 尹仕斌, 任永杰, 等. 机器人柔性视觉测量系统标定方法的改进[J]. 光学精密工程, 2014, 22(12): 3239-3246.
[17] Wu Q, Liu Y J, Wu C S. An overview of current situations of robot industry development[C]//ITM Web of Conferences. Paris: EDP Sciences, 2018: 03019.
[18] Schröer K, Albright S L, Grethlein M. Complete, minimal and model-continuous kinematic models for robot calibration[J]. Robotics and Computer-Integrated Manufacturing, 1997, 13(1): 73-85.
[19] Xuan J Q, Xu S H. Review on kinematics calibration technology of serial robots[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(8): 1759-1774.
[20] 耿令波. 工业机器人动力学参数辨识方法研究[D]. 南京: 南京航空航天大学, 2013.
[21] 丁亚东. 工业机器人动力学参数辨识[D]. 南京: 南京航空航天大学, 2015.
[22] 陈新渡. 基于误差模型的机器人定位精度补偿技术研究[D]. 武汉: 华中科技大学, 2020.
[23] Hayati S, Mirmirani M. Improving the absolute positioning accuracy of robot manipulators[J]. Journal of Field Robotics, 1985, 2(4): 397-413.
[24] Hayati S A. Robot arm geometric link parameter estimation[C]//The 22nd IEEE Conference on Decision and Control. Piscataway, NJ: IEEE, 1983: 1477-1483.
[25] 李楠. 机械臂一键自标定的运动学参数辨识研究[D]. 无锡: 江南大学, 2020.
[26] 杨坤. 基于李代数的工业机器人误差建模、 参数辨识与误差补偿研究[D]. 武汉: 华中科技大学, 2018.
[27] Stone H, Sanderson A, Neuman C. Arm signature identification[C]//1986 IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE, 1986, 3: 41-48.
[28] Stone H, Sanderson A. A prototype arm signature identification system[C]//1987 IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE, 1987, 4: 175-182.
[29] Stone H W. Kinematic modeling, identification, and control of robotic manipulators[M]. Boston: Springer Science & Business Media, 1987.
[30] Zhuang H, Roth Z S, Hamano F. A complete and parametrically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1992, 8(4): 451-463.
[31] Zhuang H Q, Wang L K, Roth Z S. Error-model-based robot calibration using a modified CPC model[J]. Robotics and Computer-Integrated Manufacturing, 1993, 10(4): 287-299.
[32] 陈钢, 贾庆轩, 李彤, 等. 基于误差模型的机器人运动学参数标定方法与实验[J]. 机器人, 2012, 34(6): 680- 688.
[33] Mooring B, Tang G. An improved method for identifying the kinematic parameters in a six-axis robot[C]//Proceedings of the International Conference and Exhibit on Computers in Engineering. Las Vegas, NV: American Society of Mechanical Engineers,1984: 79-84..
[34] Kazerounian K, Qian Z. Kinematic calibration of robotic manipulators[J]. ASME Journal of Mechanisms, Transmission and Automation in Design, 1989, 111: 482-487.
[35] Okamura K, Park F C. Kinematic calibration using the product of exponentials formula[J]. Robotica, 1996, 14(4):415.
[36] Park F C, Bobrow J E. Geometric optimization algorithims for robot kinematic design[J]. Journal of Robotic Systems, 1995, 12(6): 453-463.
[37] Selig J M. Geometric fundamentals of robotics[M]. New York: Springer, 2005.
[38] Selig J M. Lie groups and lie algebras in robotics[M]// Computational Noncommutative Algebra and Applications. Dordrecht: Springer, Dordrecht, 2004: 101-125.
[39] He R, Zhao Y, Yang S, et al. Kinematic-parameter identification for serial-robot calibration based on POE formula[J]. IEEE Transactions on Robotics, 2010, 26(3): 411-423.
[40] He R B, Li X W, Shi T L, et al. A kinematic calibration method based on the product of exponentials formula for serial robot using position measurements[J]. Robotica, 2015, 33(6): 1295-1313.
[41] 何锐波. 基于指数积公式的串联机构运动学标定方法研究[D]. 武汉: 华中科技大学, 2010.
[42] 陈根良. 操作机构尺寸与变形误差传递的统一建模方法研究[D]. 上海: 上海交通大学, 2014.
[43] Qiao Y, Chen Y P, Yang J X, et al. A five-axis geometric errors calibration model based on the common perpendicular line (CPL) transformation using the product of exponentials (POE) formula[J]. International Journal of Machine Tools and Manufacture, 2017, 118: 49-60.
[44] Qiao Y, Chen Y P, Chen B, et al. A novel calibration method for multi-robots system utilizing calibration model without nominal kinematic parameters[J]. Precision Engineering, 2017, 50: 211-221.
[45] 白海龙. 基于POE方法的工业机器人运动学标定研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[46] 谷乐丰. 工业机器人自标定方法研究[D]. 北京: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020.
[47] 王翼丰. Ethercat工业机器人参数辨识与鲁棒性控制[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[48] 汪岳. 柔性关节机器人建模与学习控制研究[D]. 南京: 东南大学, 2016.
[49] 涂骁. 基于动力学前馈的工业机器人运动控制关键技术研究[D]. 武汉: 华中科技大学, 2018.
[50] 屈艺丹. 工业机器人动力学参数辨识及软件系统开发[D]. 南京: 南京航空航天大学, 2020.
[51] Jia J D, Zhang M L, Zang X Z, et al. Dynamic parameter identification for a manipulator with joint torque sensors based on an improved experimental design[J]. Sensors, 2019, 19(10): 2248.
[52] 孙玉阳. 重载机器人动力学建模及前馈控制方法研究与实现[D]. 南京: 东南大学,2017.
[53] 田莉莉. 串联机器人动力学特性及结构优化设计研究[D]. 济南: 山东大学, 2020.
[54] 陈友东, 胡澜晓.工业机器人负载动力学参数辨识方法[J]. 机器人, 2020, 42(3): 325-335.
[55] Fu Z T, Pan J B, Spyrakos-Papastavridis E, et al. A lietheory-based dynamic parameter identification methodology for serial manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(5): 2688-2699.
[56] 赵帅. 六自由度工业机器人动力学参数辨识与控制系统设计[D]. 湖州: 浙江工业大学, 2020.
[57] 胡智宇. 基于冲击最优的弧焊机器人轨迹规划研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[58] 吴晓敏. 六轴工业机器人控制器设计与摩擦补偿研究[D]. 厦门: 厦门大学, 2018.
[59] 陈良波. 2自由度机器人转动关节LuGre摩擦模型参数辨识[D]. 泉州: 华侨大学, 2013.
[60] 张明明. 柔性关节机械臂的位置控制及振动抑制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[61] 贺苗, 吴晓敏, 邵桂芳, 等. 基于RBFNN的机器人关节摩擦建模与补偿研究[J]. 仪器仪表学报, 2020, 41(11): 278-284.
[62] 刘丽兰, 刘宏昭, 吴子英, 等. 机械系统中摩擦模型的研究进展[J]. 力学进展, 2008(2): 201-213.
[63] 陈健. 面向动态性能的工业机器人控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[64] Khorasani K. Nonlinear feedback control of flexible joint manipulators: A single link case study[J]. IEEE Transactions on Automatic Control, 1990, 35(10): 1145-1149.
[65] Bridges M M, Dawson D M. Redesign of robust controllers for rigid-link flexible-joint robotic manipulators actuated with harmonic drive gearing[J]. IEE ProceedingsControl Theory and Applications, 1995, 142(5): 508- 514.
[66] Ailon A, Gil M I, Choi E S, et al. Stabilizing robots with uncertain parameters actuated by DC motors with flexible coupling shafts[C]//Proceedings of the 1998 IEEE International Conference on Control Applications. Piscataway, NJ: IEEE, 1998, 2: 877-881.
[67] 范纪华, 章定国. 基于变形场不同离散方法的柔性机器人动力学建模与仿真[J]. 力学学报, 2016, 48(4): 843-856.
[68] 方五益. 考虑铰阻尼的柔性杆柔性铰机器人动力学研究[D]. 南京: 南京理工大学, 2020.
[69] Borikov V N, Galtseva O V, Filippov G A. Method of noncontact calibration of the robotic ultrasonic tomograph[J]. Journal of Physics: Conference Series, 2016, 671(1): 012014.
[70] Xu X H, Zhu D H, Zhang H Y, et al. TCP-based calibration in robot-assisted belt grinding of aero-engine blades using scanner measurements[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4): 635-647.
[71] 张国强. 工业机器人运动学参数与动态行为辨识技术[D]. 武汉: 华中科技大学, 2016.
[72] 马琛. 6轴关节型工业机器人平面圆度误差标定技术研究[D]. 厦门: 厦门大学, 2019.
[73] Guo Y X, Song B, Tang X Q, et al. A calibration method of non-contact R-test for error measurement of industrial robots[J]. Measurement, 2021, 173: 108365.
[74] Wang R, Wu A W, Chen X, et al. A point and distance constraint based 6R robot calibration method through machine vision[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101959.
[75] 王一. 面向测量的多关节运动机构误差模型及标定技术研究[D]. 天津: 天津大学, 2009.
[76] Du G L, Shao H K, Chen Y J, et al. An online method for serial robot self-calibration with CMAC and UKF[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42: 39-48.
[77] Gaudreault M, Joubair A, Bonev I A. Local and closedloop calibration of an industrial serial robot using a new low-cost 3D measuring device[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, NJ: IEEE, 2016: 4312-4319.
[78] 蔡煜野. 面向高精度应用的工业机器人系统误差建模与标定[D]. 上海: 东华大学, 2016.
[79] 谷乐丰. 工业机器人自标定方法研究[D]. 北京: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2020.
[80] 成世良. 基于拉线传感器的工业机器人标定系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[81] 洪伟松. 基于拉线编码器的工业机器人标定与测量系统研究[D]. 南京: 南京航空航天大学, 2016.
[82] 朱煜. 基于拉线编码器的测量系统与机器人标定算法研究与应用[D]. 南京: 南京航空航天大学, 2018.
[83] 王坤. 工业机器人运动学参数标定及误差补偿研究[D]. 武汉: 华中科技大学, 2018.
[84] Tandirci M, Angeles J, Ranjbaran F. The characteristic point and the characteristic length of robotic manipulators[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Las Vegas, NV: American Society of Mechanical Engineers, 1992, 9396: 203-208.
[85] Ma O, Angeles J. Optimum architecture design of platform manipulators[C]//Fifth International Conference on Advanced Robotics' Robots in Unstructured Environments. Piscataway, NJ: IEEE, 1991: 1130-1135.
[86] Gosselin C M. Dexterity indices for planar and spatial robotic manipulators[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE, 1990: 650-655.
[87] 张文静. 基于位移传感器的工业机器人运动学标定技术研究[D]. 南京: 南京航空航天大学, 2019.
[88] Sun Y, Hollerbach J M. Observability index selection for robot calibration[C]//2008 IEEE international conference on robotics and automation. Piscataway, NJ: IEEE, 2008: 831-836.
[89] 汤怀艳. 基于测量位形的工业机器人运动学标定研究[D]. 广州: 华南理工大学, 2018.
[90] 杜亮. 六自由度工业机器人定位误差参数辨识及补偿方法的研究[D]. 广州: 华南理工大学, 2016.
[91] 熊刚. 机器人铣削加工的误差补偿和力控制方法研究[D]. 上海: 上海交通大学, 2019.
[92] Wang H B, Gao T Q, Kinugawa J, et al. Finding measurement configurations for accurate robot calibration: Validation with a cable-driven robot[J]. IEEE Transactions on Robotics, 2017, 33(5): 1156-1169.
[93] Gautier M, Poignet P. Extended Kalman filtering and weighted least squares dynamic identification of robot[J]. Control Engineering Practice, 2001, 9(12): 1361-1372.
[94] Swevers J, Ganseman C, De Schutter J, et al. Experimental robot identification using optimised periodic trajectories[J]. Mechanical Systems and Signal Processing, 1996, 10(5): 561-577.
[95] 李博文. 大型工业机器人自动化装配定位误差标定与补偿[D]. 北京: 中国科学院大学, 2021.
[96] 高贯斌, 张石文, 那靖, 等. 基于标定和关节空间插值的工业机器人轨迹误差补偿[J]. 机械工程学报, 2021, 57(21): 55-67.
[97] 覃志奎. 6自由度机器人位姿误差建模与补偿方法研究[D]. 武汉: 华中科技大学, 2018.
[98] 王琪. 柔性关节机器人参数辨识及轨迹跟踪控制研究[D]. 秦皇岛: 燕山大学, 2018.
[99] 邓朋. 3-UPU并联机构的运动学标定研究[D]. 秦皇岛: 燕山大学, 2021.
[100] 向启均. 改进模拟退火优化遗传算法的机器人动力学参数辨识[D]. 长沙: 湖南大学, 2018.
[101] Jiang Z, Huang M, Tang X, et al. Observability index optimization of robot calibration based on multiple identification spaces[J]. Autonomous Robots, 2020, 44(6): 1029-1046.
[102] 文科, 张加波, 乐毅, 等. 数控驱动的移动铣削机器人精度提升方法[J]. 机械工程学报, 2021, 57(5): 72-80.
[103] Carriere G, Benoussaad M, Wagner V, et al. Off-line correction method suitable for a machining robotapplication to composite materials[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(9): 2361-2375.
[104] Zhao G, Zhang P F, Ma G C, et al. System identification of the nonlinear residual errors of an industrial robot using massive measurements[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59: 104-114.
[105] 王毅. 大型构件机器人铣孔加工控制系统开发及加工 误差分析[D]. 哈尔滨: 哈尔滨工业大学, 2021.
[106] Jiang Y F, Huang X, Li S G. An on-line compensation method of a metrology-integrated robot system for highprecision assembly[J]. Industrial Robot-The International Journal of Robotics Research and Application, 2016, 46(3): 647-656.
[107] 王龙飞. 飞机结构机器人自动制孔的误差补偿技术研 究[D]. 南京: 南京航空航天大学, 2019.