青藏高原短居人群缺氧风险性评价

柳金昊, 信忠保, 黄艳章, 林峰

科技导报 ›› 2022, Vol. 40 ›› Issue (14) : 92-100.

PDF(2748 KB)
PDF(2748 KB)
科技导报 ›› 2022, Vol. 40 ›› Issue (14) : 92-100. DOI: 10.3981/j.issn.1000-7857.2022.14.010
研究论文

青藏高原短居人群缺氧风险性评价

作者信息 -
1. 北京林业大学水土保持学院, 北京 100083;
2. 山西吉县森林生态系统国家野外科学观测研究站, 北京 100083
作者简介:
柳金昊,硕士研究生,研究方向为人类环境健康安全,电子信箱:hawkey_liu@126.com

Risk of hypoxia of short-term residents in Qinghai-Tibet Plateau

Author information -
1. College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
2. Ji County Station, Chinese National Ecosystem Research Network(CNERN), Beijing 100083, China

摘要

青藏高原具有鲜明的高寒缺氧的气象特征,对短居人群的健康有严重影响,从自然地理的角度研究青藏高原缺氧风险对地方发展与缺氧政策制定具有重要意义。基于2021年7月采集青藏高原不同海拔地区的气压、含氧量和短居人群的血氧饱和度等数据,建立了海拔与血氧饱和度的关系,绘制了青藏高原短居缺氧空间分布图。结果表明:(1)随着海拔的升高,绝对含氧量线性下降(y=-0.0325x+280.45,n=70,r2=0.94),绝对含氧量与海拔呈线性关系。(2)随着海拔的升高,血氧饱和度呈指数下降,缺氧风险呈指数上升(y=104-0.68×e0.35x+1.77n=70,r2=0.57)。(3)根据血氧饱和度与海拔高度的关系,青藏高原缺氧低风险区、缺氧中风险区和缺氧高风险区占青藏高原总面积比分别为10.6%、32.0%和57.4%,其中低风险区主要分布在青海东北部、柴达木盆地和林芝市以南,中风险区分布在青海西北部、西藏东部山地和青藏高原河流谷地,高风险区主要分布在藏北高原无人区和喜马拉雅山系附近。

Abstract

The Qinghai-Tibet Plateau is an attraction for ecological and cultural tourists. However, the risk of hypoxia threatens serious harm to human health. It is of great significance to study the hypoxia risk in the Qinghai Tibet Plateau from the perspective of the physical geography for the local development and the hypoxia policy-making. In this study, the relationship between the altitude and the blood oxygen saturation is studied and the spatial distribution map of the hypoxia in the Tibetan Plateau is obtained. It is shown that, (1) the absolute oxygen content decreases linearly with the increase of the altitude(y=- 0.0325x+280.45, n=70, r2=0.94); (2) there is an exponential relationship between the blood oxygen saturation and the altitude(y= 104-0.68×e0.35x+1.77, n=70, r2=0.57)and with the increase of the altitude, the risk of the hypoxia increases exponentially; (3) the Tibetan Plateau is divided into the high risk area, the medium risk area and the low risk area of hypoxia according to the relationship between the blood oxygen saturation and the altitude. The study could provide a scientific basis for the regional tourism development strategy and also a theoretical basis for further exploring the mechanism of the altitude anoxia.

关键词

青藏高原 / 高海拔 / 血氧饱和度 / 缺氧风险

Key words

Qinghai-Tibet Plateau / high altitude / blood oxygen saturation / hypoxia risk

引用本文

导出引用
柳金昊, 信忠保, 黄艳章, 林峰. 青藏高原短居人群缺氧风险性评价[J]. 科技导报, 2022, 40(14): 92-100 https://doi.org/10.3981/j.issn.1000-7857.2022.14.010
LIU Jinhao, XIN Zhongbao, HUANG Yanzhang, LIN Feng. Risk of hypoxia of short-term residents in Qinghai-Tibet Plateau[J]. Science & Technology Review, 2022, 40(14): 92-100 https://doi.org/10.3981/j.issn.1000-7857.2022.14.010

参考文献

[1] 虞虎, 钟林生, 樊杰. 青藏高原国家公园群地域功能与结构研究[J]. 生态学报, 2021, 41(3): 823-832.
[2] 许珺, 徐阳, 胡蕾, 等. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 12.
[3] 李雪, 李文斌, 封士兰, 等. 血红蛋白在高原低氧适应中的机制研究进展[J]. 浙江大学学报(医学版) , 2019, 48(6): 674-681.
[4] 吴天一. 青藏高原人体低氧适应问题[J]. 青海环境, 1995, 6(1): 5-7.
[5] 吴天一. 我国青藏高原慢性高原病研究的最新进展[J]. 中国实用内科杂志, 2012, 32(5): 321-323.
[6] 薛华菊, 方成江. 高原人体生理适应学理论在进藏旅游中的应用[J]. 干旱区资源与环境, 2011, 25(2): 183-189.
[7] 赵海霞. 高浓度葡萄糖应用于高原列车进藏旅客急性轻型高原病460例临床分析[J]. 青海医学杂志, 2010, 40(9): 87-88.
[8] 史培军, 陈彦强, 张安宇, 等. 青藏高原大气氧含量影响因素及其贡献率分析[J]. 科学通报, 2019, 64(7): 89-98.
[9] Zhong L, Yu H, Zeng Y. Impact of climate change on Tibet tourism based on tourism climate index[J]. Journal of Geographical Sciences, 2019, 29(12): 2085-2100.
[10] 长安, 葛全胜, 方修琦, 等. 青藏铁路旅游线气候适宜性分析[J]. 地理研究, 2007, 26(3): 533-540.
[11] 余志康, 孙根年, 冯庆, 等. 青藏高原旅游气候舒适性与气候风险的时空动态分析[J]. 资源科学, 2014, 36(11): 2327-2336.
[12] 查瑞波, 孙根年, 董治宝, 等. 青藏高原大气氧分压及游客高原反应风险评价[J]. 生态环境学报, 2016, 29(1): 92-98.
[13] Woorons X, Richalet J P. Modelling the relationships between arterial oxygen saturation, exercise intensity and the level of aerobic performance in acute hypoxia[J]. European Journal of Applied Physiology, 2021, 121(7): 1993-2003.
[14] Qiu J. China: The third pole[J]. Nature, 2008, 454, 393- 396.
[15] Yao T, Thompson L G, Mosbrugger V, et al. Third pole environment (TPE) [J]. Environmental Development, 2012, 3(1): 52-64.
[16] Chen X, An S, Inouye D W, et al. Temperature and snowfall trigger alpine vegetation green-up on the world's roof[J]. Global Change Biology, 2015, 21, 3635- 3646.
[17] 张丛林, 陈伟毅, 黄宝荣, 等. 国家公园旅游可持续性管理评估指标体系——以西藏色林错-普若岗日冰川国家公园潜在建设区为例[J]. 生态学报, 2020, 40(20): 7299-7311.
[18] 尼玛. 西藏旅游助力西藏精准脱贫研究[J]. 现代商业, 2017, 11: 79-81.
[19] 钟林生.青藏高原旅游规划案例[M]. 北京: 中国旅游出版社, 2018.
[20] Cynthia M B. Two routes to functional adaptation: Tibetan and Andean high-altitude natives[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(Suppl.1): 8655-8600
[21] 陈卫民, 崔健君, 郭艳辉, 等. 动脉与肺泡氧分压比值在评价ICU病人肺换气功能中的应用[J]. 中国实用外科杂志, 1997(7): 48-49.
[22] Gattinoni L, Busana M, Camporota L. Standardised PaO2/ FiO 2 ratio in COVID-19: Added value or risky assumptions? [J]. European Journal of Internal Medicine, 2021, 92: 45-54.
[23] LeónVelarde F, Gamboa J, Chuquiza W, et al. Hematological parameters in high altitude residents living at 4355, 4660, and 5500 meters above sea level[J]. High Altitude Medicine and Biology, 2000, 1: 97-104
[24] 曹稳根. 氧离曲线特征及其影响因素作用的分析[J]. 生物学通报, 2000, 35(12): 11-13.
[25] 张倩, 官立彬, 白志川, 等. 血红蛋白与高原习服适应的研究进展[J]. 重庆医学, 2014, 43(6): 753-755, 757.
[26] 罗凯, 罗炎杰. 氧离曲线的数学模式与临床意义[J]. 中国呼吸与危重监护杂志, 2007, 6(6): 448-451.
[27] 魏志强, 庞西宁. 基于血氧饱和度计算客舱应急补氧量的研究[J]. 航天医学与医学工程2020, 33(5): 422- 426.

基金

科技部第二次青藏高原综合科学考察研究项目(2019QZKK0608)
PDF(2748 KB)

Accesses

Citation

Detail

段落导航
相关文章

/