基于物质流分析的中国钴资源供需形势

邢欣然, 汤林彬, 汪鹏, 王鹤鸣, 岳强, 陈伟强, 杜涛

科技导报 ›› 2022, Vol. 40 ›› Issue (21) : 120-128.

PDF(2528 KB)
PDF(2528 KB)
科技导报 ›› 2022, Vol. 40 ›› Issue (21) : 120-128. DOI: 10.3981/j.issn.1000-7857.2022.21.012
专题:初级矿产品供应安全战略

基于物质流分析的中国钴资源供需形势

作者信息 -
1. 东北大学国家环境保护生态工业重点实验室, 沈阳 110819;
2. 中国科学院赣江创新研究院, 赣州 341000;
3. 中国科学院城市环境研究所, 中国科学院城市环境与健康重点实验室, 厦门 361021;
4. 中国科学院大学, 北京 100049
作者简介:
邢欣然,硕士研究生,研究方向为工业生态学,电子信箱: 2101590@stu.neu.edu.cn

Supply and demand situation of cobalt resources in China based on material flow analysis

Author information -
1. State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China;
2. Ganjiang Innovation Research Institute, Chinese Academy of Sciences, Ganzhou 341000, China;
3. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
4. University of Chinese Academy of Sciences, Beijing 100049, China

摘要

为厘清中国钴资源的供需形势,利用物质流分析2000—2020年中国钴资源流量、存量和供需格局变化。研究发现:(1)中国钴矿进口量逐年提升,对外依存度高,每年均在70%以上,精炼钴产量及净出口量逐年增长,2020年分别达到了8.5万t和1.4万t。(2)钴产品制造量不断提高,从2000年的0.01万t上升至2020年的6.3万t,电池是钴主要的制造产品;在贸易阶段,钴产品整体呈现净出口,2020年净出口量为1.7万t。(3)钴产品在用存量持续上升,2020年达到了12.5万t。钴产品整体回收率低,进一步加大回收是应对钴需求扩张的主要方法。同时,建议提高技术水平,减少加工过程的浪费,降低对于钴资源的依赖,还需要做好资源储备,应对国际局势变化。

Abstract

In order to clarify the supply and demand situation of cobalt resources in China, material flow was used to analyze the changes in the flow, stock and supply and demand pattern of cobalt resources in China during 2000—2020. This article shows that 1) the import volume of cobalt ore to China was increasing year by year and the degree of external dependence was high, i.e., more than 70% yearly, and refined cobalt production and net exports increased year by year, reaching 85000 t and 14000 t, respectively in 2020; 2) the production of cobalt products was increasing from 100 t in 2000 to 63000 t in 2020, and batteries were the main cobalt products; in the trade phase, cobalt products showed a net export of 17000 t in 2020; 3) the stock of cobalt products in use continued to rise, reaching 125000 t in 2020. On the other hand, the overall recovery rate of cobalt products has been low, and improvement in recycling is the primary way to cope with the expansion of cobalt demand. At the same time, the article suggests improving the technical level, reducing the waste during processing process, reducing the dependence of cobalt resources, and doing an excellent job in resource reserve to adapt to the change of the international situation.

关键词

/ 动态物质流 / 供需关系 / 全生命周期

Key words

cobalt / dynamic mass flow / supply and demand / whole life cycle

引用本文

导出引用
邢欣然, 汤林彬, 汪鹏, 王鹤鸣, 岳强, 陈伟强, 杜涛. 基于物质流分析的中国钴资源供需形势[J]. 科技导报, 2022, 40(21): 120-128 https://doi.org/10.3981/j.issn.1000-7857.2022.21.012
XING Xinran, TANG Linbin, WANG Peng, WANG Heming, YUE Qiang, CHEN Weiqiang, DU Tao. Supply and demand situation of cobalt resources in China based on material flow analysis[J]. Science & Technology Review, 2022, 40(21): 120-128 https://doi.org/10.3981/j.issn.1000-7857.2022.21.012

参考文献

[1] 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420.
[2] 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64.
[3] 王晨阳, 汪鹏, 汤林彬, 等. 碳中和背景下中国电动车产业稀土需求预测[J]. 科技导报, 2022, 40(8): 50-61.
[4] Wang P, Wang H M, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022, 2(3): 392-395.
[5] Zhang C, Liu B, Li N, et al. Resource nexus for sustainable development: Status quoand prospect[J]. Chinese Science Bulletin, 2020, 66(26): 3426-3440.
[6] 余韵, 杨建锋. 中国战略性矿产地位和作用的变化: 以钴为例[J]. 矿业研究与开发, 2020, 40(12): 177-183.
[7] 赵燊, 汪鹏, 王路, 等. 美国关键矿产战略的演化特征及启示[J]. 科技导报, 2022, 40(8): 91-103.
[8] 杨卉芃, 王威. 全球钴矿资源现状及开发利用趋势[J]. 矿产保护与利用, 2019, 39(5): 41-49, 55.
[9] 公凡影, 周园园, 于晓飞, 等. 钴资源的应用历史和发展[J]. 地球, 2019(11): 34-39.
[10] US Geological Survey. Mineral commodity summaries, 2020[M]. Reston: Government Printing Office, 2021.
[11] 李成伟, 王家义. 全球钴资源供应现状简析[J]. 中国资源综合利用, 2018, 36(7): 102-103.
[12] 刘超, 陈甲斌. 全球钴资源供需形势分析[J]. 国土资源情报, 2020(10): 27-33.
[13] 刘彬, 王银宏, 王臣, 等. 中国钴资源产业形势与对策建议[J]. 资源与产业, 2014, 16(3): 113-119.
[14] 徐昱, 王建平, 吴景荣. 我国钴矿资源现状及进出口分析[J]. 矿业研究与开发, 2014, 34(5): 112-115, 132.
[15] 刘全文, 沙景华, 闫晶晶, 等. 中国钴资源供应风险评价与治理研究[J]. 中国矿业, 2018, 27(1): 50-56.
[16] 周艳晶, 李建武, 王高尚, 等. 中国钴资源进口安全分析[J]. 矿产保护与利用, 2019, 39(5): 50-55.
[17] 刘立涛, 赵慧兰, 刘晓洁, 等. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534.
[18] 李新, 任强, 罗胤达, 等. 基于物质流分析的中国机械行业铁资源代谢过程研究[J]. 资源科学, 2018, 40(12): 2329-2340.
[19] Song L L, Wang P, Hao M, et al. Mapping provincial steel stocks and flows in China: 1978—2050[J]. Journal of Cleaner Production, 2020, 262: 121393.
[20] 郝敏, 陈伟强, 马梓洁, 等. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526.
[21] Chen W Q. Dynamic product?level analysis of in?use aluminum stocks in the United States[J]. Journal of Industrial Ecology, 2017, 22(6): 1425-1435.
[22] 李新, 康欣宇, 林靖, 等. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545.
[23] 陈玮, 汪鹏, 赵燊, 等. 稀土元素物质流分析研究进展[J]. 科技导报, 2022, 40(8): 14-26.
[24] Sun X, Hao H, Liu Z, et al. Tracing global cobalt flow: 1995—2015[J]. Resources Conservation and Recycling, 2019, 149: 45-55.
[25] Harper E M, Kavlak G, Graedel T E. Tracking the metal of the goblins: Cobalt's cycle of use[J]. Environmental Science & Technology, 2012, 46(2): 1079-1086.
[26] Zeng A Q, Chen W, Rasmussen K D, et al. Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages[J]. Nature Communications, 2022, 13: 1341.
[27] 文博杰, 韩中奎. 2015年中国钴物质流研究[J]. 中国矿业, 2018, 27(1): 73-77.
[28] Chen Z Y, Zhang L G, Xu Z M. Tracking and quantifying the cobalt flows in mainland China during 1994— 2016: Insights into use, trade and prospective demand [J]. Science of the Total Environment, 2019, 672: 752- 762.
[29] Chen Z Y, Zhang L G, Xu Z M. Analysis of cobalt flows in mainland China: Exploring the potential opportunities for improving resource efficiency and supply security[J]. Journal of Cleaner Production, 2020, 275: 122841.
[30] Wang Y B, Ge J P. Potential of urban cobalt mines in China: An estimation of dynamic material flow from 2007 to 2016[J]. Resources, Conservation and Recycling, 2020, 161: 104955.
[31] Dunn J, Slattery M, Kendall A, et al. Circularity of lithium-ion battery materials in electric vehicles[J]. Environmental Science & Technology, 2021, 55(8): 5189-5198.
[32] Asari M, Sakai S I. Li-ion battery recycling and cobalt flow analysis in Japan[J]. Resources, Conservation and Recycling, 2013, 81: 52-59.
[33] Bobba S, Mathieux F, Blengini G A. How will seconduse of batteries affect stocks and flows in the EU? A model for traction Li-ion batteries[J]. Resources, Conservation and Recycling, 2019, 145: 279-291.
[34] Liu W Q, Liu W, Li X X, et al. Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000—2018[J]. Resources, Conservation and Recycling, 2021, 164: 105122.
[35] Song J L, Yan W Y, Cao H B, et al. Material flow analysis on critical raw materials of lithium-ion batteries in China[J]. Journal of Cleaner Production, 2019, 215: 570- 581.
[36] Mudd G M, Weng Z, Jowitt S M, et al. Quantifying the recoverable resources of by-product metals: The case of cobalt[J]. Ore Geology Reviews, 2013, 55: 87-98.
[37] Gulley A L, Mccullough E A, Shedd K B. China's domestic and foreign influence in the global cobalt supply chain[J]. Resources Policy, 2019, 62: 317-323.
[38] US Geological Survey. Mineral commodity summaries, 2020[M]. Reston: Government Printing Office, 2020.
[39] US Geological Survey. Mineral commodity summaries, 2019[M]. Reston: Government Printing Office, 2019.
[40] US Geological Survey. Mineral commodity summaries, 2018[M]. Reston: Government Printing Office, 2018.
[41] 中国有色金属工业协会. 中国有色金属工业年鉴[M]. 北京: 中国有色金属杂志社, 2020.
[42] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
[43] 中华人民共和国海关总署. 中国海关统计年鉴[M]. 北京: 中国海关出版社, 2020.
[44] UN Comtrade. International trade statistics database[EB/ OL]. [2022-07-30]. https://comtrade.un.org/.
[45] 王嫱. 矿产品对外依存度计量方法模型与应用研究[J]. 中国国土资源经济, 2020, 33(9): 60-67.

基金

国家自然科学基金项目(41871204,52070034)
PDF(2528 KB)

229

Accesses

0

Citation

Detail

段落导航
相关文章

/