三维垂直裂纹在材料界面的扩展及影响因素

武斌

科技导报 ›› 2015, Vol. 33 ›› Issue (8) : 58-62.

PDF(3338 KB)
PDF(3338 KB)
科技导报 ›› 2015, Vol. 33 ›› Issue (8) : 58-62. DOI: 10.3981/j.issn.1000-7857.2015.08.009
研究论文

三维垂直裂纹在材料界面的扩展及影响因素

作者信息 -
中国石油大学(华东)胜利学院, 东营257000
作者简介:
武斌,讲师,研究方向为数值算法及材料断裂力学,电子信箱:yhq840310@sina.com

Propagation of 3D vertical crack on material interface and its influencing factors

Author information -
Shengli College, China University of Petroleum, Dongying 257000, China

摘要

针对三维垂直裂纹扩展到双材料界面时的路径选择问题,建立了双材料三维垂直裂纹在界面扩展的计算模型,提出了三维垂直裂纹在材料界面扩展的3 种方式及判断准则;以线弹簧模型模拟两种材料间的界面胶结情况,得到了裂纹在界面处的剪切位移及剪切应力,结合虚拟裂纹扩展技术计算能量释放率沿裂纹边缘的分布情况,分析了裂纹长度、界面参数及材料弹性模量对裂纹扩展路径的影响。结果表明,随着裂纹长度的增大,界面剪切位移逐渐增大,界面容易发生剪切滑移;随着界面参数的增大,能量释放率减小,同时,剪切位移也随之急剧减小,说明界面参数的增大对阻止裂纹穿透界面及沿界面扩展具有明显作用;当裂纹在较硬材料内时,裂纹容易穿透界面进入较软材料内。

Abstract

When a 3D vertical crack propagates on the interface between bi-materials, there are three route choices. To study this problem, a crack propagation model of the 3D vertical crack on material interface is established. A linear spring layer model is used to simulate the imperfect interface and calculate the shear displacement and the shear stress along the interface. Then, the distribution of the energy release rate is calculated along the edge of the crack. The influencing factors of route choices, such as the crack length, the interface parameters and the elasticity modulus, are analyzed. It is shown that the interface shear displacement increases with the increase of the crack length, which means that the interface slips easily. The larger the interface parameters, the smaller the energy release rate and the interface shear displacement will be. In other words, the crack propagation through and along the interface might be greatly hampered if the interface parameters increase. When the crack is in the harder material, it might penetrate the interface and goes into the softer material easily.

关键词

三维垂直裂纹 / 虚拟裂纹扩展技术 / 线弹簧模型 / 界面剪切位移 / 能量释放率

Key words

3D vertical crack / virtual crack closure technique / linear spring model / interface shear displacement / energy release rate

引用本文

导出引用
武斌. 三维垂直裂纹在材料界面的扩展及影响因素[J]. 科技导报, 2015, 33(8): 58-62 https://doi.org/10.3981/j.issn.1000-7857.2015.08.009
WU Bin. Propagation of 3D vertical crack on material interface and its influencing factors[J]. Science & Technology Review, 2015, 33(8): 58-62 https://doi.org/10.3981/j.issn.1000-7857.2015.08.009
中图分类号: TB12   

参考文献

[1] Li X F, Fan T Y. The asymptotic stress field for a rigid circular inclusion at the interface of two bonded dissimilar elastic half space materials[J]. International Journal of Solids and Structures, 2001, 38: 44-45.
[2] Shin K C, Liu H, Lee J J, et al. Interfacial crack tip field in anisotropic isotropic bimaterials[J]. Composite Structures, 2004, 66: 1-4.
[3] 宋鸣, 李有堂, 魏兴春. 双材料垂直于界面裂纹应力强度因子的有限元法[J]. 科学技术与工程, 2008,8(28): 5544-5548. Song Ming, Li Youtang, Wei Xingchun. Finite element method for stress intensity factor of a crack perpendicular to bimaterial interface[J]. Science Technology and Engineering, 2008, 8(28): 5544-5548.
[4] 董宇光, 李慧剑, 严小丽. 四点剪切加载下混凝土裂纹扩展路径研究[J]. 固体力学学报, 2004, 25(2): 198-202. Dong Yuguang, Li Huijian, Yan Xiaoli. Analysis of the crack propagation path of concretes under four- point shear load[J]. Acta Mechanica Solida Sinica, 2004, 25(2): 198-202.
[5] Wang X, Pan E, Chung P W. Some basic problems in anisotropic bimaterials with a viscoelastic interface[J]. International Journal of Solids and Structures, 2009, 46(20): 3725-3733.
[6] Benveniste Y, Miloh T. Imperfect soft and stiff interfaces in twodimensional elasticity[J]. Mechanics of Materials. 2001, 33(6): 309-323.
[7] Chen W Q, Zhou Y Y, Lu C F, et al. Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding[J]. European Journal of Mechanics A /Solids, 2009, 28(4): 720-727.
[8] Antipov Y A, Avila-Pozos O, Kolaczkowski S T, et al. Mathematical model of delamination cracks on imperfect interfaces[J]. International Journal of Solids and Structures, 2001, 38(36-37): 6665-6697.
[9] Zhong X C, Li X F, Lee K Y. Analysis of a mode-I crack perpendicular to an imperfect interface[J]. International Journal of Solids and Structures, 2009, 46(6): 1456-1463.
[10] Peirce A P, Gu H R, Siebrits E. Uniform asymptotic Green's functions for efficient modeling of cracks in elastic layers with relative shear deformation controlled by linear springs[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33: 285- 308.
[11] 钟献词, 张克实. 垂直于双材料非完美界面II型裂纹的断裂分析[J]. 应用数学和力学, 2012, 33(3): 342-352. Zhong Xianci, Zhang Keshi. Fracture analysis of a mode- II crack perpendicular to an imperfect bimaterial interface[J]. Applied Mathematics and Mechanics, 2012, 33(3): 342-352.
[12] 杨焕强, 王瑞和, 周卫东. 垂直于双材料非完美界面的裂纹断裂分析[J]. 科学技术与工程, 2013, 13(35): 10450-10454. Yang Huanqiang, Wang Ruihe, Zhou Weidong. Fracture analysis of crack perpendicular to an imperfect bimaterial interface[J]. Science Technology and Engineering 2013, 13(35): 10450-10454.
[13] Irwin G R. Onset of fast crack propagation in high strength steel and aluminum alloys[C]. Sagamore: Research Conference Proceedings, 1956, 2: 289-305.
[14] 解德, 钱勤, 李长安. 断裂力学中的数值计算方法及工程应用[M]. 北京: 科学出版社, 2009. Xie De, Qian Qin, Li Chang'an. Fracture mechanics of numerical method and its engineering application[M]. Beijing: Science Press, 2009.

基金

国家自然科学基金项目(51274216)
PDF(3338 KB)

Accesses

Citation

Detail

段落导航
相关文章

/