Effects of Arbuscular Mycorrhiza on Growth of Amorpha Fruticosa L. and Soil Improvement in Coal Mining Subsidence Area
WANG Jin1,2, BI Yinli1, DENG Mubiao1, ZOU Hui1, SUN Jiangtao1, XIE Wenwu1
1. College of Geoscience and Surveying Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
2. Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
Abstract:Arbuscular mycorrhizal technology is one of the important means for ecological restoration in mining areas. In this paper, effects of the arbuscular mycorrhizal (AM) inoculation on the growth and development of Amorpha Fruticosa L. and soil quality were studied between 2 and 14 months post-inoculation. The results showed that compared with that of the non-inoculated Amorpha Fruticosa L., the survival rate of inoculated one increased by 7.2%-9.7%, the plant height markably increased by 34%-62%, the crown diameter significantly increased by 39%-65%, the mycorrhizal infection rate significantly increased by 16%-21%, and the hyphal density increased by 50%-70%. The mycorrhizal infection rate and hyphal density had significantly or highly significantly positive correlations with contents of organic carbon, total nitrogen, available phosphorus and potassium, alkali-hydrolyzable nitrogen in the soil. The soil pH significantly decreased, and the contents of soil organic carbon, total nitrogen, available phosphorus and potassium, alkali-hydrolyzable nitrogen significantly increased by the inoculation of mycorrhiza. Glomalin related soil protein is an important composition of organic matter in soil, which can reflect small changes of soil quality. These results show that AM can promote growth and development of Amorpha Fruticosa L. and soil improvement in coal mining subsidence areas.
王瑾, 毕银丽, 邓穆彪, 邹慧, 孙江涛, 解文武. 丛枝菌根对采煤沉陷区紫穗槐生长及土壤改良的影响[J]. 科技导报, 2014, 32(11): 26-32.
WANG Jin, BI Yinli, DENG Mubiao, ZOU Hui, SUN Jiangtao, XIE Wenwu. Effects of Arbuscular Mycorrhiza on Growth of Amorpha Fruticosa L. and Soil Improvement in Coal Mining Subsidence Area. journal1, 2014, 32(11): 26-32.
[1] 李建华, 郜春花, 卢朝东, 等. 菌剂与肥料配施对矿区复垦土壤白三叶草生长的影响[J]. 中国生态农业学报, 2011, 19(2): 280-284. Li Jianhua, Gao Chunhua, Lu Chaodong, et al. Effect of combined application of microbial inoculum and fertilizeron white clover growth in reclaimed mine soil[J]. Chinese Journal of Eco-Agriculture, 2011, 19 (2): 280-284.
[2] 胡振琪, 魏忠义, 秦萍. 矿山复垦土壤重构的概念与方法[J]. 土壤, 2005, 37(1): 8-12. Hu Zhenqi, Wei Zhongyi, Qin Ping. Concept and methods for soil reconstruction in mined land reclamation[J]. Soils, 2005, 37(1): 8-12.
[3] 崔树军, 谷立坤, 廉有轩, 等. 煤矿废弃地的微生物修复技术[J]. 金属 矿山, 2010(4): 176-179. Cui Shujun, Gu Likun, Lian Youxuan, et al. Research of microbiology technology in ecological remediation of the abandoned coal mining land[J]. Metal Mine, 2010(4): 176-179.
[4] 张桃林, 潘剑君, 赵其国. 土壤质量研究进展与方向[J]. 土壤, 1999, 31(1): 2-8. Zhang Taolin, Pan Jianjun, Zhao Qiguo. Research progress and direction of soil quality[J]. Soils, 1999, 31(1): 2-8.
[5] 岳辉, 毕银丽, Y. Zhakypbek, 等. 接种菌根对神东矿区采煤沉陷地的生态修复效应[J]. 科技导报, 2012, 30(36): 56-60. Yue Hui, Bi Yinli, Zhakypbek Y, et al. Ecological reclamation effect of arbuscualr mycorrhizal inoculum on subsided land in the area of shendong coal mine[J]. Science & Technology Review, 2012, 30(36): 56-60.
[6] Smith S E, Read D J. Mycorrhizal symbiosis[M]. London: Academic Press, 1997.
[7] Juge C, Prévost D, Bertrand A, et al. Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae[J]. Applied Soil Ecology, 2012, 61(10): 147-157.
[8] 弓明钦, 陈应龙, 仲崇禄. 菌根研究及其应用[M]. 北京: 中国林业出版社, 1997. Gong Mingqin, Chen Yinglong, Zhong Chonglu. Applying research of mycorrhiza[M]. Beijing: China Foresrty Press, 1997.
[9] Vergeer P, Berg L J L, Baar J, et al. The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: Implications for heathland restoration[J]. Biological Conservation, 2006, 129(2): 226- 235.
[10] Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97-107.
[11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. Bao Shidan. Agricultural chemical soil analysis[M]. Beijing: China Agriculture Press, 2005.
[12] Abbott L K, Robson A D, De Boer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular- arbuscular mycorrhizal fungus, Glomus Fasciculatum[J]. New Phytologist, 1984, 97(3): 437- 446.
[13] Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1): 158-160.
[14] 杜善周, 毕银丽, 吴王燕, 等. 丛枝菌根对矿区环境修复的生态效应[J]. 农业工程学报, 2008, 24(4): 113-116. Du Shanzhou, Bi Yinli, Wu Wangyan, et al. Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas[J]. Transactions of the CSAE, 2008, 24(4): 113-116.
[15] 杜介方, 张彬, 解宏图, 等. 不同施肥处理对球囊霉素土壤蛋白含量 的影响[J]. 土壤通报, 2011, 42(3): 573-577. Du Jiefang, Zhang Bin, Xie Hongtu, et al. The effect of fertilization treatments on the concentration of GRSP[J]. Chinese Journal of Soil Science, 2011, 42(3): 573-577.
[16] Nichols K A, Wright S F. Carbon and nitrogen in operationally defined soil organic matter pools[J]. Biology and Fertility of Soils, 2006, 43(2): 215-220.
[17] Halvorson J J, Gonzalez J M. Tannic acid reduces recovery of watersoluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein[J]. Soil Biology and biochemistry, 2006, 40(1): 186-197.
[18] He X, Li Y, Zhao L. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China[J]. Soil Biology and Biochemistry, 2010, 42(8): 1313- 1319.
[19] Graham J H, Linderman R G, Menge J A. Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of troyer citrange[J]. New Phytologist, 1982, 91(2): 183-189.
[20] 符亚儒, 高保山, 封斌, 等. 陕北榆林风沙区防风固沙林体系结构配 置与效益研究[J]. 西北林学院学报, 2005, 20(2): 18-23. Fu Yaru, Gao Baoshan, Feng Bin, et al. Structure configuration and protecting benefit of Yulin sandbreak forest system in northern Shaanxi[J]. Journal of Northwest Forestry University, 2005, 20(2): 18-23.
[21] Heidari M, Karami V. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress[J]. Journal of the Saudi Society of Agricultural Sciences, 2014, 13(1): 9-13.
[22] Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis[J]. Plant and Soil, 1994, 159(1): 89-102.
[23] 高子勤, 张淑香. 连作障碍与根际微生态研究Ⅰ.根系分泌物及其生 态效应[J]. 应用生态学报, 1998, 9(5): 549-554. Gao Ziqin, Zhang Shuxiang. Continuous cropping obstacle and rizospheric microecology I. Root exudates and their ecological effects[J]. Chinese Journal of Applied Ecology, 1998, 9(5): 549-554.