高温高压CO2 /水交替微观驱油机制及运移特征
王明1 , 杜利1 , 聂法健1 , 韩宏彦2 , 龙运前3 , 宋洪庆2
1. 中国石化中原油田石油勘探开发研究院, 濮阳457001;
2. 北京科技大学土木与环境工程学院, 北京100083;
3. 浙江海洋学院创新应用研究院, 舟山316022
Microscopic Visualization Simulation of CO2 /Water Alternating Flooding
WANG Ming1 , DU Li1 , NIE Fajian1 , HAN Hongyan2 , LONG Yunqian3 , SONG Hongqing2
1. Research Institute of Petroleum Exploration & Production, Zhongyuan Oilfield Company, SINOPEC, Puyang 457001, China;
2. School of Civil & Environmental Engineering, University of Science and Technology, Beijing 100083, China;
3. Innovation Application Institute, Zhejiang Ocean University, Zhoushan 316022, China
摘要 针对复杂的油藏环境, 利用高温高压微观可视化模拟系统, 在60℃、18 MPa 下进行CO2 /水交替驱油实验, 以便更直观、清楚地观察水、二氧化碳气体及CO2 /水交替驱的驱油现象。通过观察水、二氧化碳气体和CO2 /水交替驱油过程中多相流体的渗流过程及残余油分布状况, 详细地描述多相流体在多孔介质中的运移特征, 并应用图像处理技术和软件分析方法定量分析各阶段模型内残余油比例。结果表明, CO2 /水交替驱油既克服了水驱替过程中的绕流现象, 也降低了二氧化碳驱过程中气沿渗透性好的孔道、区窜进问题, 使水、气驱替优势互补。CO2 /水交替驱与二氧化碳驱相比提高采收率12.31%。从而为CO2 /水交替驱油提高采收率技术进一步发展提供基础。
关键词 :
高温高压 ,
微观可视化模拟 ,
气/水交替驱油 ,
提高采收率
Abstract :In this study, a high-temperature and high-pressure microscopic visualization model was used to simulate water flooding, CO2 flooding and water-alternating-gas (WAG) flooding using CO2 at 60℃ and 18 MPa in complex reservoirs. Multiphase fluid displacement features in porous media were described in detail by observing the multi-phase fluid flow and residual oil distribution in the process of water flooding, CO2 flooding and WAG flooding. The residual oil ratio at each process was quantitatively analyzed using image processing technology and software analysis. The experimental results show that WAG flooding not only decreased fluid slipstream in water flooding, but also reduced gas breakthrough along the high permeability pore in CO2 flooding. WAG flooding made the advantages of water flooding and CO2 flooding complementary to each other, increasing the oil recovery by 12.31% compared with CO2 flooding.
Key words :
high temperature and high pressure
microscopic visualization simulation
gas/water alternating flooding
improve the recovery efficiency
收稿日期: 2014-07-29
基金资助: 北京市高校青年英才计划项目(2013012601601)
作者简介 : 王明, 博士, 研究方向为渗流力学、油气田开发, 电子信箱:seasky517@126.com
引用本文:
王明, 杜利, 聂法健, 韩宏彦, 龙运前, 宋洪庆. 高温高压CO2 /水交替微观驱油机制及运移特征[J]. 科技导报, 2014, 32(36): 80-85.
WANG Ming, DU Li, NIE Fajian, HAN Hongyan, LONG Yunqian, SONG Hongqing. Microscopic Visualization Simulation of CO2 /Water Alternating Flooding. Science & Technology Review, 2014, 32(36): 80-85.
链接本文:
http://www.kjdb.org/CN/10.3981/j.issn.1000-7857.2014.36.013 或 http://www.kjdb.org/CN/Y2014/V32/I36/80
[1] 张茂林, 谭光天, 梅海燕, 等. 葡北油田气水交替混相驱数值模拟研究[J]. 断块油气田, 2003, 10(1): 40-43. Zhang Maolin, Tan Guangtian, Mei Haiyan, et al. Portugal north oil field gas water exchange miscible flooding numerical simulation study[J]. Journal of Fault Block Oil and Gas Fields, 2003, 10(1): 40-43.
[2] 朱华银, 周娟, 万玉金. 多孔介质中气水渗流的微观机理研究[J]. 石油 实验地质, 2004, 26(6): 571-573. Zhu Huayin, Zhou Juan, Wan Yujin. Microscopic mechanism of the porous medium gas water seepage study[J]. Geological Oil Experiment, 2004, 26(6): 571-573.
[3] 冯庆贤, 唐国庆, 陈智宇, 等. 水/气交替驱微观实验研究[J]. 油气采收 率技术, 1995, 2(4): 6-13. Feng Qingxian, Tang Guoqing, Chen Zhiyu, et al. Water/gas alternating flooding microscopic study[J]. Journal of Oil and Gas Recovery Technology, 1995, 2(4): 6-13.
[4] 冯宝峻, 高畅, 王晓玲. 水气交替注入试验效果分析[J]. 大庆石油地 质与开发, 1995, 14(3): 60-62. Feng Baojun, Gao Cheng, Wang Xiaoling. Water alternating injection test effect analysis[J]. Journal of Daqing Petroleum Geology and Development, 1995, 14(3): 60-62.
[5] 彭远进, 刘建仪, 王仲林. 注气混相驱中水气切换问题实验研究[J]. 天 然气工业, 2005, 25(9): 86-88. Peng Yuanjin, Liu Jianyi, Wang Zhonglin. Moisture switch problems in gas injection miscible flooding experiment research[J]. Journal of Natural Gas Industry, 2005, 25(9): 86-88.
[6] 娄兆彬, 杨朝光, 王志鹏, 等. 中原油田高压低渗油藏注氮气效果及其 分析[J]. 西部探矿工程, 2005, 5(2): 23-25. Lou Zhaobin, Yang Chaoguang, Wang Zhipeng, et al. Zhongyuan oilfield high pressure nitrogen gas injection effect of low permeability reservoirs, and its analysis[J]. Journal of western exploration engineering, 2005, 5(2): 23-25.
[7] Ghafoori A, Shahbazi K. The experimental investigation of nitrogen and carbon dioxide water-alternating-gas injection in a carbonate reservoir[J]. Petroleum Science and Technology, 2012, 30: 1071-1081.
[8] 张德平. O2 驱采油技术研究与应用现状[J]. 科技导报, 2011, 29(13): 75-78. Zhang Deping. O2 flooding oil production technology research and application status quo[J]. Science & Technology Review, 2011, 29(13): 75-78.
[9] 范希良, 廖新维, 张组波, 等. 水驱后油藏O2 驱提高采收率与埋存实 验研究[J]. 科技导报, 2009, 27(6): 48-50. Fan Xiliang, Liao Xinwei, Zhang Zubo, et al. O2 flooding after water flooding reservoirs to improve recovery efficiency and storage experiment study[J]. Science & Technology Review, 2009, 27(6): 48-50.
[10] 赵金省, 刘笑春, 杨棠英, 等. 一种测定O2 驱最小混相压力的实验 方法[J]. 科技导报, 2013, 31(15): 56-58. Zhao Jinsheng, Liu Xiaochun, Yang Tangying, et al. An experimental method for determination of O2 flooding minimum miscible pressure[J]. Science & Technology Review, 2013, 31(15): 56-58.
[11] 油气田开发专业标准化技术委员会. SY-T 6573—2003最低混相压 力细管实验测定法[S]. 北京: 中国标准出版社, 2003. Oil-gas Field Development Standardization Technical Committee. SYT 6573—2003 measurement method for minimum miscibility pressure byslim tube test[S]. Beijing: Standards Press of China, 2003.
[12] 张英芝, 杨正明, 唐立根, 等. 特低渗油藏注O2 驱油微观机制[J]. 科 技导报, 2012, 30(35): 56-58. Zhang Yingzhi, Yang Zhengming, Tang Ligen, et al. An experimental method for determination of O2 flooding minimum miscible pressure[J]. Science & Technology Review, 2012, 30(35): 56-58.
[13] ELement D J, Masters J H K, Sargent N C. Assessment of threephase re-lative permeability model using laboratory hysteresis data[A]. SPE 84903, 2003.
[14] 朱维耀, 夏小雪, 郭省学, 等. 高温高压条件下油藏内源微生物微观 驱油机理[J]. 石油学报, 2014, 35(3): 528-535. Zhu Weiyao, Xia Xiaoxue, Guo Shengxue, et al. Indigenous microorganismsmicroscopic oil displacement mechanism under high temperature and high pressure conditions[J]. Acta Petrolei Sinica, 2014, 35(3): 528-535.
[15] 李士轮, 张正卿, 冉新权, 等. 注气提高石油采收率技术[M]. 成都: 四 川科学技术出版社, 2001. Li Shilun, Zhang Zhengqing, Ran Xinquan, et al. Gas injection enhanced oil recovery technology[M]. Chengdu: Sichuan Science and Technology Press, 2001.
[16] 侯健, 张顺康, 袁十宝. 聚合物驱微观渗流实验剩余油分布的定量分 析研究[J]. 水动力学研究与进展: A辑, 2006, 21(1): 41-45. Hou Jian, Zhang Shunkang, Yuan Shibao. Quantitative analysis of the polymer flooding microscopic seepageexperiment of remaining oil distribution of study[J]. Water Dynamics Research and Progress in A series, 2006, 21(1): 41-45.
[17] 计秉玉. 国内外油田提高采收率技术进展与展望[J]. 石油与天然气 地质, 2012, 33(1): 111-117. Ji Bingyu. Progress and prospects of enhanced oil recovery technologies at home and abroad[J]. Oil and Gas Geology, 2012, 33 (1): 111-117.
[1]
马涛, 王强, 陈文征, 聂俊. 注天然气提高采收率应用现状 [J]. 科技导报, 2014, 32(21): 72-75.
[2]
崔茂蕾, 吕成远, 海玉芝, 王友启, 谭中良, 徐爽. 高钙镁油藏钙镁离子对聚合物溶液黏度的影响 [J]. 科技导报, 2014, 32(1): 30-33.
[3]
蒲万芬;袁成东;金发扬;贾虎;赵若锟. 轻质油藏高压注空气技术应用前景分析 [J]. , 2013, 31(17): 72-79.
[4]
张广垠;杨顺辉;豆宁辉;赵向阳;夏柏如. 沙特高温高压低渗凝析气井全过程欠平衡设计与应用 [J]. , 2012, 30(34): 41-44.
[5]
肖香姣;姜汉桥;刘曰武;张建业;万义钊;王小培;欧阳伟平. 高温高压复杂井身结构气井井筒温度计算方法 [J]. , 2011, 29(29): 32-37.
[6]
张德平. CO2 驱采油技术研究与应用现状 [J]. , 2011, 29(13): 75-79.
[7]
王 俊;黄立信;俞 理. 花土沟高矿化度油藏内源微生物提高采收率实验研究 [J]. , 2011, 29(11-03): 26-28.