Abstract:In 1915, Einstein predicted gravitational waves, presented the quantum theory of electromagnetic radiation and completed his concept of photon. In one hundred years, gravitational waves were directly detected through the interference of lasers, which are exactly based on Einstein's quantum theory of electromagnetic radiation. The techniques of gravitational wave detection are also related to Einstein 's concept of photons and theory of Brownian motion. The first direct detection of gravitational waves was a commemoration of the centenaries of both contributions of Einstein, one being general relativity and prediction of gravitational waves, the other being quantum theory of radiation. After a review of the “Einsteinian elements” in gravitational detection techniques, that is, the lasers, the photons and the thermal noises, we survey Einstein's research activities in 1916 and look for the historic connections between Einstein's work on gravitational waves and his work on quantum theory of electromagnetic waves, by analyzing the first-hand materials, especially the correspondence of Einstein during that period.
施郁. 爱因斯坦在1916:从引力波到量子电磁辐射理论[J]. 科技导报, 2016, 34(8): 107-112.
Yu Shi. Einstein in 1996: from gravitational waves to quantum theory of electromagnetic radiation. Science & Technology Review, 2016, 34(8): 107-112.
[1] LIGO Scientific collaboration and the virgo collaboration. Observation of gravitational waves from a binary black hole merger [J]. Physical Review Letters,2016, 116(6): 061102.
[2] LIGO Scientific collaboration and the virgo collaboration. The advanced LIGO detectors in the era of first discoveries [J]. http://arxiv.org/abs/1602.03838.
[3] Einstein A. The field equations of gravity[J]. Sitzungsber K Preuss Akad Wiss, 1915(2): 844-847.
[4] Pais A. Subtle is the Lord[M]. Oxford: Oxford University Press, 1982.
[5] Einstein A. Approximate integration of field equations of gravitation [J]. Sitzungsber. K. Preuss. Akad. Wiss., 1916(1): 688-696.
[6] LIGO. https://www.ligo.caltech.edu/
[7] Brillet A, Hall J L. Improved laser test of the isotropy of space[J]. Physical Review Letters, 1979, 42: 549-553.
[8] 施郁. 庆祝2015国际光之年、纪念早期量子论——从2014 年诺贝尔物理学奖与化学奖谈起[J]. 现代物理知识, 2015, 27(1): 32-34;
[9] 施郁. 从引力波谈爱因斯坦的幸运[J]. 自然杂志, 2016, 38(2): 120-124.
[10] Einstein A. The foundation of the general theory of relativity [J]. Annals of Physics, 1916, 49 (7): 769-822.
[11] Einstein A. The collected papers of albert einstein[M]. Volume 8, Princeton: Princeton University Press, 1998.
[12] Einstein A. Concerning gravitational waves[J]. Sitzungsber K Preuss Akad Wiss, 1918(1): 154-167.
[13] Einstein A, Rosen N. On gravitational waves[J]. Journal of The Franklin Institute, 1937, 223: 43-54.
[14] Kennefick D. Einstein versus Physical Review[J]. Physics Today, 2005, 58(9): 43-48.
[15] 刘寄星. 爱因斯坦和同行审稿制度的一次冲突[J]. 物理, 2005, 34(7) : 487-490.
[16] Einstein A. Hamilton's principle and general relativity theory[J]. Sitzungsber. K. Preuss. Akad. Wiss., 1916, (2): 1111-1116.
[17] Schoen R, Yau S T. Positivity of the total mass of a general space-time[J]. Physical Review Letters, 1979, 43: 1457.
[18] Einstein A. Emission and absorption of radiation in quantum theory[J]. Verh Deutsch Phys Ges, 1916, 18: 318-323.
[19] Einstein A. On The quantum theory of radiation [J]. Mitt Phys Ges Zurich, 1916, 18: 47-62.
[20] Einstein A. On The quantum theory of radiation [J]. Phys Z, 1917, 18: 121-128.
[21] Stone A D. Einstein and The Quantum[M]. Princeton: Princeton University Press, 2013.
[22] Einstein A. The collected papers of Albert Einstein[M]. Volume 10, Princeton: Princeton University Press, 2006.