[1] Xing L, McKellar R C, Xu X, et al. A Feath-ered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber[J]. Cur-rent Biology, 2016, 26(24):3352-3360.
[2] Xing L, McKellar R C, Wang M, et al. Mum-mified precocial bird wings in mid-Creta-ceous Burmese amber[J]. Nature Communi-cations, 2016, 7:doi:10.1038/ncom-ms12089.
[3] Schmidt A R, Jancke S, Lindquist E E, et al. Arthropods in amber from the Triassic Period[J]. Proceedings of the National Acad-emy of Sciences of the United States of America, 2012, 109(37):14796-14801.
[4] Poinar Jr G O, Cannatella D C. An Upper Eocene frog from the Dominican Republic and its implication for Caribbean biogeogra-phy[J]. Science, 1987, 237:1215-1217.
[5] Sherratt E, del Rosario Castañeda M, Gar-wood R J, et al. Amber fossils demonstrate deep-time stability of Caribbean lizard com-munities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32):9961-9966.
[6] Daza J D, Stanley E L, Wagner P, et al. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards[J]. Sci-ence Advances, 2016, 2(3):e1501080.
[7] MacPhee R D E, Grimaldi D A. Mammal bones in Dominican amber[J]. Nature, 1996, 380(6574):489.
[8] Ostrom J H. Archaeopteryx and the origin of birds[J]. Biological Journal of the Linnean Society, 1976, 8(2):91-182.
[9] McKellar R C, Chatterton B D E, Wolfe A P, et al. A diverse assemblage of Late Creta-ceous dinosaur and bird feathers from Cana-dian amber[J]. Science, 2011, 333(6049):1619-1622.
[10] Prum R O. Development and evolutionary origin of feathers[J]. Journal of Experimen-tal Zoology, 1999, 285(4):291-306.
[11] Navalón G, Marugán-Lobón J, Chiappe L M, et al. Soft-tissue and dermal arrange-ment in the wing of an Early Cretaceous bird:Implications for the evolution of avi-an flight[J]. Scientific Reports, 2015, 5:14864.
[12] Borkent A, Grimaldi D A. The earliest fos-sil mosquito (Diptera:Culicidae), in midCretaceous Burmese amber[J]. Annals of the Entomological Society of America, 2004, 97(5):882-888.
[13] Higuchi R, Bowman B, Freiberger M, et al. DNA sequences from the quagga, an ex-tinct member of the horse family[J]. Na-ture, 1984, 312:282-284.
[14] Pääbo S. Ancient DNA:extraction, charac-terization, molecular cloning, and enzymat-ic amplification[J]. Proceedings of the Na-tional Academy of Sciences of the United States of America, 1989, 86(6):1939-1943.
[15] Golenberg E M, Giannasi D E, Clegg M T, et al. Chloroplast DNA sequence from a Miocene Magnolia species[J]. Nature, 1990, 344(6267):656.
[16] DeSalle R, Gatesy J, Wheeler W, et al. DNA sequences from a fossil termite in Oligo-Miocene amber and their phyloge-netic implications[J]. Science, 1992, 257(5078):1933.
[17] Cano R J, Poinar H N, Pieniazek N J, et al. Amplification and sequencing of DNA from a 120-135-million-year-old weevil[J]. Nature, 1993, 363(6429):536.
[18] Woodward S R, Weyand N J, Bunnell M. DNA sequence from Cretaceous period bone fragments[J]. Science, 1994, 266(5188):1229.
[19] Gutiérrez G, Marin A. The most ancient DNA recovered from an amber-preserved specimen may not be as ancient as it seems[J]. Molecular Biology and Evolution, 1998, 15(7):926-929.
[20] Allentoft M E, Collins M, Harker D, et al. The half-life of DNA in bone:measuring decay kinetics in 158 dated fossils[J]. Pro-ceedings of the Royal Society of London B:Biological Sciences, 2012:rspb20121745.
[21] Welker F, Collins M J, Thomas J A, et al. Ancient proteins resolve the evolutionary history of Darwin/'s South American ungu-lates[J]. Nature, 2015, 522(7554):81-84.
[22] Pan Y, Zheng W, Moyer A E, et al. Molec-ular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eo-confuciusornis[J]. Proceedings of the Na-tional Academy of Sciences of the United States of America, 2016, 113(49):E7900-E7907.