Research progress in influence factors of phosphorus removal in constructed wetland systems
QIU Fuguo, XU Yanqiu, XU Junting, FU Kunming
Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education; Beijing University of Civil Engineering and Architecture, Beijing 100044, China
Abstract:Phosphorus is one of the main causes of eutrophication of water bodies. Constructed wetland can remove phosphorus effectively and economically. This paper discusses the mechanism of phosphorus removal in constructed wetland, and reviews the physical/chemical/biological reactions for phosphorus removal by wetland plants, microorganisms and media in the constructed wetland. The effects of temperature, dissolved oxygen, hydraulic retention time and hydraulic load on the phosphorus purification in constructed wetland are discussed. The development and application of non-media constructed wetland for pollutants removal in water are also discussed.
[1] 刘光钊. 水体富营养及其藻害[M]. 北京: 中国环境科学出版社, 2005. Liu Guangzhao. Water eutrophication and algal damage[M]. Beijing: China Environmental Science Press, 2005.
[2] 2015中国环境状况公报[M]. 北京: 中国环境可续出版社, 2015. 2015 report on the state of China's environment[M]. Beijing: China Environmental Sustainability Press, 2015.
[3] Stroganova M, Myagkova A, Prokofieva T, et al. Soil of moscow and urban environment[M]. Moscow: Russian Federation Press, 1998: 1-171.
[4] Ahlgren J, Tranvik L, Gogoll A, et al. Depth attenuation of biogenic phosphorus compounds in lake sediment measured by 31P NMR[J]. Environment Science and Technology, 2005, 39: 867-872.
[5] Ahlgren J, Reitzel K, Tranvik L, et al. Degradation of organic phospho-rus compounds in anoxic Baltic Sea sediments: A 31P nuclear magnetic resonance study[J]. Limnology & Oceanography, 2006, 51(5): 2341-2348.
[6] Vaalgamaa S. The effect of urbanisation on Laajalahti Bay, Helsinki City, as reflected by sediment geochemistry[J]. Marine Pollution Bulle-tin, 2004, 48(7/8): 650-662.
[7] 潘长森, 王小娇. 模拟人工湿地脱氮除磷效果及其影响因素研究[J]. 安徽农业科学, 2015(10): 234-238. Pan Changsen, Wang Xiaojiao. Researches on the denitrificationdephosphorization rate and its effect elements in simulated constructed wetland[J]. Journal of Anhui Agricultural Sciences, 2015 (10): 234-238.
[8] 吴晓乾. 人工湿地组合基质除磷效果试验研究[D]. 苏州: 苏州科技学 院, 2015. Wu Xiaoqian. Experimental study on phosphorus removal in layered substrates constructed wetland system[D]. Suzhou: Suzhou University of Sciene and Technology, 2015.
[9] Xu X Y, Cao X D, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmen-tal Science and Pollution Research, 2013(1): 358-368.
[10] Kumari M, Tripathi B D. Effect of Phragmites australis, and Typha latifolia, on biofiltration of heavy metals from secondary treated effluent[J]. International Journal of Environmental Science and Technology, 2015, 12(3): 1029-1038.
[11] 万正芬, 张学庆, 卢少勇. 19种人工湿地填料对磷吸附解吸效果研 究[J]. 水处理技术, 2015(4): 35-39. Wan Zhengfen, Zhang Xueqing, Lu Shaoyong. The adsorption and desorption of phosphorus by nineteen constructed wetland substrates[J]. Water Treatment Technology, 2015(4): 35-39.
[12] 张虎成, 田卫, 俞穆清, 等. 人工湿地生态系统污水净化研究进展[J]. 环境工程学报, 2004, 5(2): 11-15. Zhang Hucheng, Tian Wei, Yu Muqing, et al. Research progress of wastewater purification in constructed wetland ecosystem[J]. Chinese Journal of Environmental Engineering, 2004, 5(2): 11-15.
[13] Jamshidi S, Akbarzadeh A, Woo K S, et al. Wastewater treatment using integrated anaerobic baffled reactor and Bio-rack wetland planted with Phragmites sp. and Typha sp.[J]. Iranian Journal of Environmental Health Science & Engineering, 2014, 12(1): 131-143.
[14] 郭露, 张翔凌, 陈巧珍, 等. 人工湿地常用生物陶粒基质LDHs覆膜 改性及其除磷效果研究[J]. 环境科学学报, 2015(9): 2840-2849. Guo Lu, Zhang Xiangling, Chen Qiaozhen, et al. Removal of phosphorus by the modified biological ceramsite coated with different layered double hydroxides in constructed wetlands[J]. Journal of Environmental Science, 2015(9): 2840-2849.
[15] 滕良慧, 张延羽, 何春光, 等. 火山渣作为人工湿地基质除磷效果的 比较研究[J]. 东北师大学报(自然科学版), 2015(3): 132-136. Teng Lianghui, Zhang Yanyu, He Chunguang, et al. Study of scoria as an constructed wetland substrate for phosphorus removal[J]. Journal of Northeast Normal University(Natural Science Edition), 2015(3): 132-136.
[16] 曹飞华, 何琴. 三种人工湿地填料的除磷效果研究[J]. 绿色科技, 2015(3): 217-219. Cao Feihua, He Qin. The research on phosphorus removal effect of three kinds of constructed wetland padding[J]. Journal of Green Science and Technology, 2015(3): 217-219.
[17] Valipour A, Hamnabard N, Woo K S, et al. Performance of high-rate constructed phytoremediation process with attached growth for domestic wastewater treatment: Effect of high TDS and Cu[J]. Journal of Environmental Management, 2014, 145(12): 1-8.
[18] 周楠楠, 高芮, 张择瑞. 浮床植物系统对富营养化水体的净化效果[J]. 江苏农业科学, 2013, 41(3): 337-339. Zhou Nannan, Gao Rui, Zhang Zerui. Purification of eutrophic water by floating bed plant system[J]. Jiangsu Agricultural Science, 2013, 41 (3): 337-339.
[19] 王骥. 生物湿地床处理富营养化水体的试验研究[D]. 吉林: 吉林大 学, 2012. Wang Ji. Experimental study on treatment of eutrophic water by biological wetland bed[D]. Jilin: Jilin University, 2012.
[20] Stevenson F J. Cycle of soil, carbon, nitrogen, phosphorus, sulfur and micronutrients[M]. New York: Lewis Publishers, 1985.
[21] Dalal R C. Soil organic phosphorus[J]. Advances in Agronomy, 1977, 29: 83-117.
[22] 袁可能. 植物营养素的土壤化学[M]. 北京: 科学出版社, 1983: 113-121. Yuan Keneng. The soil chemistry of plant nutrients[M]. Beijing: Science Press, 1983: 113-121.
[23] Hedley M J, Steward W B. Method to measure microbial phosphate in soil[J]. Soil Biology and Biochemistry, 1982( 4): 377-385.
[24] Vymazal J, Brix H, Cooper P F, et al. Removal mechanisms and types of constructed wetlands[J]. 1998: 17-66.
[25] Devai I, Delaune R D. Evidence for phosphine production and emission from Louisiana and Florida marsh soils[J]. Organic Geochemistry, 1995, 23(3): 277-279.
[26] Kadlec R H. Overview: Surface flow constructed wetlands[J]. Water Science Technology, 1995, 32(3): 1-12.
[27] 魏成, 刘平, 秦晶. 不同基质和不同植物对人工湿地净化效率的影 响[J]. 生态学报, 2008(8): 3691-3697. Wei Cheng, Liu Ping, Qin Jing. Effects of substrates and plants on purification efficiency of constructed wetland[J]. Acta Ecologica Sinica, 2008(8): 3691-3697.
[28] 张冉, 徐红新. 垂直流人工湿地系统中植物对除磷效果的影响研究[J]. 环境工程, 2016(增刊1): 308-311. Zhang Ran, Xu Hongxin. Effect of Plants on the removal of phosphorus in vertical flow constructed wetland system[J].Environmental Engineering, 2016(Suppl 1): 308-311.
[29] 梁武. 试分析不同植物与水力负荷对人工湿地脱氮除磷的影响[J]. 科学中国人, 2016, 29: 188. Liang Wu. Effects analysis of different plant and hydraulic loads on nitrogen and phosphorus removal in constructed wetlands[J]. Scientific Chinese, 2016, 29: 188.
[30] 文科军, 张玉瑶, 吴丽萍, 等. 潜流园林人工湿地脱氮除磷效果正交 试验[J]. 环境科学与技术, 2015, 38(9): 113-118. Wen Kejun, Zhang Yuyao, Wu Liping, et al. Efficiency of nitrogen and phosphorus removal in subsurface flow garden constructed wetland based on orthogonal design[J]. Environmental Science & Technology, 2015, 38(9): 113-118.
[31] Pezeshki S R, Delaune R D. Effects of soil oxidation-reduction conditions on internal oxygen transport, root aeration, and growth of wetland plants[C]//Proceedings of A Conference on Sustainability of Wetlands and Water Resourses. USA: University of Mississippi, 2000: 139-145.
[32] 梁彩霞. 正交试验对比不同条件的人工湿地除磷效果[J]. 山西化工, 2016, 36(3): 92-94. Liang Caixia. Comparison of phosphorus removal effect in constructed wetlands with various conditions by orthogonal experiment[J]. Shanxi Chemical Industry, 2016, 36(3): 92-94.
[33] 刘洋. 不同运行方式对人工湿地强化除磷的影响研究[J]. 环境工程, 2012, 30(3): 15-18. Liu Yang. Research on the influence of constructed wetlands for intensifying phosphorus removal under various operation conditions[J]. Environmental Engineering, 2012, 30(3): 15-18.
[34] 卢少勇, 金相灿, 余刚. 人工湿地的磷去除机理[J]. 生态环境, 2006 (2): 391-396. Lu Shaoyong, Jin Xiangcan, Yu Gang. Phosphorus removal mechanism of constructed wetland [J]. Ecology and Environment, 2006 (2): 391-396.
[35] 梁威, 吴振斌, 周巧红, 等. 构建湿地基质微生物与净化效果及相关 分析[J]. 中国环境科学, 2002, 22(3): 282-285. Liang Wei, Wu Zhenbin, Zhou Qiaohong, et al. Analysis of substrate microorganisms in the constructed wetland and their correlation with wastewater purification effects[J]. China Environmental Science, 2002, 22(3): 282-285.
[36] 张鸿, 陈光荣, 吴振斌, 等. 两种人工湿地中氮磷净化率与细菌分布 关系的初步研究[J]. 华中师范大学学报, 1999, 33(12): 575-578. Zhang Hong, Chen Guangrong, Wu Zhenbin, et al. The study on the relationship between N, P remoivng rates and the distribution of bacteria in two artifical wetlands[J]. Journal of Central China Normal University(Natural Sciences), 1999, 33(12): 575-578.
[37] Reddy K R. Fate of nitrogen and phosphorus in a wastewater retention reservoir containing aquatic macrophytes[J]. Environmental Quality, 1983, 12(1): 137-141.
[38] Mitsch W J, Gosselink J G. Wetlands[M]. 2nd ed. New York, U S A: Van Nostrand Reinhold, 1993.
[39] 王万宾, 胡飞, 孔令瑜, 等. 人工湿地脱氮除磷基质的吸附能力及其 影响因子[J]. 湿地科学, 2016(1): 122-128. Wang Wanbin, Hu Fei, Kong Lingyu, et al. Adsorption capacity of substrates of denitrification and dephosphorization in constructed wetlands and their influencing factors[J]. Wetland Science, 2016(1): 122-128.
[40] 张翔凌, 黄华玲, 郭露, 等. Zn系LDHs覆膜改性人工湿地沸石基质 除磷机制[J]. 环境科学, 2016, 37(8): 3058-3066. Zhang Xiangling, Huang Hualing, Guo Lu, et al. Mechanisms of phosphorus removal by modified zeolites substrates coated with Zn-LDHs in laboratory-scale vertical-flow constructed wetlands[J]. Environmental Science, 2016, 37(8): 3058-3066.
[41] Gray S, Kinross J, Read P, et al. The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems for waste treatment[J]. Water Research, 2000, 34(8): 2183-2190.
[42] Yuan D H, Jing L J, Gao S X, et al. Analysis on the removal efficien-cy of phosphorus in some substrates used in constructed wetland sys-tems[J]. Environmental Science, 2005, 26(26): 51-55.
[43] Tan H X, Zhou Q. Characterization of adsorption on phosphorus in stuffings and its removal in substratum in wetland[J]. Journal of Agroenvironmental Science, 2005, 24(2): 353-356.
[44] Shilton A, Pratt S, Drizo A, et al. ‘Active' filters for upgrading phosphorus removal from pond systems[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2005, 51(12): 111-116.
[45] Yuan D H, Jing L J, Zhang M Q, et al. Mechanism of phosphorus purification in some kinds of substrates constructed wetland systems[J]. China Environmental Science, 2004, 24(5): 614-617.
[46] Drizo A, Frost C A, Grace J, et al. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems[J]. Water Research, 1999, 33(17): 3595-3602.
[47] 贺漫媚, 朱纯, 何仲坚. 生态浮床在广州亚运城河涌的应用及景观 效果[J]. 广东园林, 2010, 32(6): 10-13. He Manmei, Zhu Chun, He Zhongjian. Application and landscape effects of eco-floating bed in the Guangzhou Asian Games City’s River[J]. Guangdong Landscape Architecture, 2010, 32(6): 10-13.
[48] 葛铜岗, 罗固源, 许晓毅, 等. 串联式菖蒲浮床去除污染河水氮磷的 试验研究[J]. 重庆环境科学, 2010, 3(1): 5-7. Ge Tonggang, Luo Guyuan, Xu Xiaoyi, et al. Study on N and P removal in polluted water by acorus calamus cultivated in the series of floating-beds system[J]. Chongqing Environmental Science, 2010, 3 (1): 5-7.
[49] 秦伯强, 胡维平, 刘正文, 等. 太湖水源地水质净化的生态工程试验 研究[J]. 环境科学学报, 2007, 27(1): 5-12. Qin Boqiang, Hu Weiping, Liu Zhengwen, et al. Ecolog ical engineering experiment on water purification in drinking water source in Meiliang Bay, Lake Taihu[J]. Acta Scientiae Circumstantiae, 2007, 27(1): 5-12
[50] Valipour A, Raman V K, Ghole V S. A new approach in wetland sys-tems for domestic wastewater treatment using Phragmites sp[J]. Ecolog-ical Engineering, 2009, 35: 1797-1803.
[51] 王骥, 张兰英, 卢少勇, 等. 再力花/菖蒲生物湿地床去除河水中氮磷 的试验[J]. 吉林大学学报(地球科学版), 2012(增刊1): 408-414. Wang Ji, Zhang Lanying, Lu Shaoyong, et al. Removal of N and P from river water treated by the bio-rack wetland planted with Thalia dealbata and Acorus calamus Linn[J]. Journal of Jilin University(Earth Science Edition), 2012(Suppl 1): 408-414.
[52] Jia L Y, Zhang B, He Y L, et al. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution[J]. Journal of Environmental Sciences, 2014, 26(2): 466-477.
[53] Barca C, Troesch S, Meyer D, et al. Steel slag filters to upgrade phosphorus removal in constructed wetlands: Two years of field experiments[J]. Environmental Science & Technology, 2013, 47(1): 549-56.
[54] Wang Z, Dong J, Liu L, et al. Study of oyster shell as a potential substrate for constructed wetlands[J]. Water Science & Technology, 2013, 67(10): 2265-2272.
[55] Klimeski A, Uusitalo R, Turtola E. Screening of Ca-and Fe-rich ma-terials for their applicability as phosphate-retaining filters[J]. Ecologi-cal Engineering, 2014, 68(7): 143-154.
[56] Calder N J. Field studies of enhanced phosphorus removal from constructed wetland effluents[J]. Masters Abstracts International, 2002, 40(3): 0744.
[57] 李志元, 张丽云, 张永祥. 水温与表面负荷对表流人工湿地脱氮除 磷效果的影响[J]. 市政技术, 2015, 33(4): 109-111. Li Zhiyuan, Zhang Liyun, Zhang Yongxiang. The effect of water temperature and surface loading on nitrogen and phosphorus removal of surface flow constructed wetlands[J]. Municipal Engineering Technology, 2015, 33(4): 109-111.
[58] Drizo A, Frost C A, Grace J, et al. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems[J]. Water Research, 1999, 33(17): 3595-3602.
[59] Zhang T, Xu D, He F, et al. Application of constructed wetland for wa-ter pollution control in China during 1990-2010[J]. Ecological Engi-neering, 2012, 47(5): 189-197.
[60] Valipour A, Raman V K, Ahn Y H. Effectiveness of domestic wastewa-ter treatment using a bio-hedge water hyacinth wetland system[J]. Wa-ter, 2015, 7(1): 329-347.
[61] Yang X, Zhang X, Wang J, et al. Performance of the subsurface flow constructed wetlands for pretreatment of slightly polluted source water[J]. Ecotoxicology, 2014, 23(4): 699-706.
[62] Wang H, Wang X, Wang S M, et al. Purification efficiency of com-pound aquatic plants for the eutrophic water body[J]. Applied Mechan-ics & Materials, 2014, 675-677: 430-433.
[63] 熊国祥. 人工湿地中磷的行为与去除机理的研究[D]. 广州: 广东工 业大学, 2007. Xiong Guoxiang. Research on the behavior and removal mechanism of phosphorus in wetland[D]. Guangzhou: Guangdong University of Technolog, 2007.
[64] 吴建强, 周训华, 王敏, 等. 水力停留时间变化对2种人工湿地净化效果的影响[J]. 环境工程学报, 2012, 6(10): 3537-3542. Wu Jianqiang, Zhou Xunhua, Wang Min, et al. Influence of hydraulic retention time variation on purification effects of two different constructed wetlands[J]. Chinese Journal of Environmental Engineering, 2012, 6(10): 3537-3542.
[65] Kadlec R H, Knight R L. Treatment wetlands[M]. New York: Lewis Publishers, 1996.
[66] 张俊辉, 吴红斌, 张冉. 垂直流人工湿地在城镇污水厂尾水深度脱 氮除磷中的应用[J]. 工程建设, 2016, 48(2): 70-74. Zhang Junhui, Wu Hongbin, Zhang Ran. Application of vertical flow artificial wetland in deep removal of nitrogen and phosphorus from tail water of city sewerage plant[J]. Engineering construction, 2016, 48 (2): 70-74.
[67] Liolios K A, Moutsopoulos K N, Tsihrintzis V A. Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands[J]. Chemical Engineering Journal, 2012(200/202): 681-693.
[68] Liolios K A, Moutsopoulos K N, Tsihrintzis V A. Comparative model-ing of HSF constructed wetland performance with and without evapo-transpiration and rainfall[J]. Environmental Processes, 2014, 1(2): 171-186.
[69] Langergraber G, Giraldi D, Mena J, et al. Recent developments in numerical modelling of subsurface flow constructed wetlands[J]. Science of the Total Environment, 2009, 407(13): 3931-3943.
[70] Kumar J L, Zhao Y Q. A review on numerous modeling approaches for effective, economical and ecological treatment wetlands[J]. Journal of Environmental Management, 2011, 92(3): 400-406.
[71] Langergraber G, Rousseau D P, García J, et al. CWM1: A general model to describe biokinetic processes in subsurface flow constructed wetlands[J]. Water Science & Technology, 2009, 59(9): 1687-1697.
[72] Giraldi D, Vitturi M D M, Iannelli R. FITOVERT: A dynamic numeri-cal model of subsurface vertical flow constructed wetlands[J]. Environ-mental Modelling & Software, 2010, 25(5): 633-640.
[73] Samsó R, Garcia J. BIO_PORE, a mathematical model to simulate biofilm growth and water quality improvement in porous media: Application and calibration for constructed wetlands[J]. Ecological Engineering, 2013, 54(54): 116-127.
[74] Wang Y C, Lin Y P, Huang C W, et al. A system dynamic model and sensitivity analysis for simulating domestic pollution removal in a freewater surface constructed wetland[J]. Water, Air, & Soil Pollution, 2012, 223(5): 2719-2742.
[75] Wang H, Meselhe E A, Waldon M G, et al. Compartment-based hydro-dynamics and water quality modeling of a Northern Everglades Wet-land, Florida, USA[J]. Ecological Modelling, 2012, 247(4): 273-285.
[76] Wang J, Huang S L, He Chengda, et al. Numerical analysis of the per-formance of horizontal and wavy subsurface flow constructed wetlands[J]. Journal of Hydrodynamics, 2011, 23(3): 339-347.
[77] Kotti I P, Sylaios G K, Tsihrintzis V A. Fuzzy modeling for nitrogen and phosphorus removal estimation in free-water surface constructed wetlands[J]. Environmental Processes, 2016, 3(1): 65-79.