Abstract:Since the concept of polymers was proposed in 1920 by Hermann Staudinger,polymeric materials have gradually stepped into human's life and become one of the most representative and promising materials in materials science.With the development of science and technology,polymer materials,being an important material for national security and industry,have become an important cornerstone of modern industry and high-tech industry.The development of polymer science is directly related to the progress of agriculture,energy,information,environment,population and other areas.At the same time,the intersection and combination of polymer science with material science,information science,life science and environmental science have also played an important role in promoting social progress and improving human living quality.This article describes the development and potential application of high performance polymer materials in terms of general polymers,biomedical polymers and energetic polymers,and points out that the development of high performance polymer materials will directly promote national economy.
孙昭艳, 门永锋, 刘俊, 石强, 杨小牛, 安立佳. 高性能高分子材料:从基础走向应用[J]. 科技导报, 2017, 35(11): 60-68.
SUN Zhaoyan, MEN Yongfeng, LIU Jun, SHI Qiang, YANG Xiaoniu, AN Lijia. High performance polymer materials:From basic research to application. Science & Technology Review, 2017, 35(11): 60-68.
[1] Eagan J M, Xu J, Di Girolamo R, et al. Combining polyethylene and polypropylene:Enhanced performance with PE/iPP multiblock polymers[J]. Science, 2017, 355(6327):814-816.
[2] Lamberti G. Flow induced crystallisation of polymers[J]. Chemical Society Reviews, 2014, 43(7):2240-2252.
[3] Yang Z, Mai K. Crystallization and melting behavior of β-nucleated isotactic polypropylene/polyamide 6 blends with maleic anhydride grafted polyethyl-ene-vinyl acetate as a compatibilizer[J]. Thermochimica Acta, 2010, 511(1):152-158.
[4] Wang Y, Liu P, Lu Y, et al. Mechanism of polymorph selection during crystallization of random butene-1/ethylene copolymer[J]. Chinese Journal of Poly-mer Science, 2016, 34(8):1014-1020.
[5] Qiao Y, Wang Q, Men Y. Kinetics of Nucleation and Growth of Form Ⅱ to I Polymorphic Transition in Polybutene-1 as Revealed by Stepwise Annealing[J]. Macromolecules, 2016, 49(14):5126-5136.
[6] Wang Y, Jiang Z, Wu Z, et al. Tensile deformation of polybutene-1 with stable form I at elevated temperature[J]. Macromolecules, 2012, 46(2):518-522.
[7] Wang Y, Jiang Z, Fu L, et al. Lamellar thickness and stretching temperature dependency of cavitation in semicrystalline polymers[J]. PloS one, 2014, 9(5):e97234.
[8] Qazi T H, Rai R, Boccaccini A R. Tissue engineering of electrically responsive tissues using polyaniline based polymers:A review[J]. Biomaterials, 2014, 35(33):9068.
[9] Nair L S, Laurencin C T. Biodegradable polymers as biomaterials[J]. Progress in polymer science, 2007, 32(8):762-798.
[10] 梁慧刚, 黄可. 生物医用高分子材料的发展现状和趋势[J]. 新材料产业, 2016(2):12-15. Liang Huigang, Huang Ke. Current status and trends of biomedical polymer materials[J]. Advanced Materials Industry, 2016(2):12-15.
[11] Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles:Mechanisms of controlling drug release[J]. Chemical Reviews, 2016, 116(4):2602-2663.
[12] 奚廷斐. 生物医用材料现状和发展趋势[J]. 中国医疗器械信息, 2006, 12(5):1-4. Xi Tingfei. The current situation and developmental trend of biomedical materials[J]. China Medical Devices Information, 2006, 12(5):1-4.
[13] Campoccia D, Montanaro L, Arciola C R. A review of the biomaterials technologies for infection-resistant surfaces[J]. Biomaterials, 2013, 34(34):8533-8554.
[14] Hasan J, Crawford R J, Ivanova E P. Antibacterial surfaces:the quest for a new generation of biomaterials[J]. Trends in biotechnology, 2013, 31(5):295-304.
[15] Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections[J]. FEMS Immunology & Medical Microbiology, 2010, 59(3):227-238.
[16] 文细毛, 任南, 吴安华, 等. 全国医院感染监测网2012年综合ICU医院感染现患率调查监测报告[J]. 中国感染控制杂志, 2014, 13(8):458-462. Wen Ximao, Ren Nan, Wu Anhua, et al. Survey on healthcare-associated infection in general intensive care units re-ported to China HAI Surveillance Network[J]. Chinese Journal of Infection Control, 2014, 13(8):458-462.
[17] Noimark S, Dunnill C W, Wilson M, et al. The role of surfaces in catheter-associated infections[J]. Chemical Society Reviews, 2009, 38(12):3435-3448.
[18] Nicolle L E. Urinary catheter-associated infections[J]. Infectious Disease Clinics of North America, 2012, 26(1):13-27.
[19] Borges A, Abreu A C, Dias C, et al. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including bio-films[J]. Molecules, 2016, 21(7):877.
[20] Davies D. Understanding biofilm resistance to antibacterial agents[J]. Nature Reviews Drug Discovery, 2003, 2(2):114-122.
[21] Arciola C R, Campoccia D, Speziale P, et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implica-tions for biofilm-resistant materials[J]. Biomaterials, 2012, 33(26):5967-5982.
[22] Uckay I, Hoffmeyer P, Lew D, et al. Prevention of surgical site infections in orthopaedic surgery and bone trauma:State-of-the-art update[J]. Journal of Hospital Infection, 2013, 84(1):5-12.
[23] Arciola C R, Baldassarri L, Campoccia D, et al. Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of En-terococcus faecalis from orthopaedic implant infections[J]. Biomaterials, 2008, 29(5):580-586.
[24] Crick C R, Ismail S, Pratten J, et al. An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition[J]. Thin Solid Films, 2011, 519(11):3722-3727.
[25] Smith R S, Zhang Z, Bouchard M, et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and mi-crobial attachment[J]. Science Translational Medicine, 2012, 4(153):153ra132-153ra132.
[26] Flores-Mireles A L, Walker J N, Bauman T M, et al. Fibrinogen release and deposition on urinary catheters placed during urological procedures[J]. The Journal of Urology, 2016, 196(2):416-421.
[27] Yang C, Ding X, Ono R J, et al. Brush-Like Polycarbonates Containing Dopamine, Cations, and PEG Providing a Broad-Spectrum, Antibacterial, and Antifouling Surface via One-Step Coating[J]. Advanced Materials, 2014, 26(43):7346-7351.
[28] Brown E D, Wright G D. Antibacterial drug discovery in the resistance era[J]. Nature, 2016, 529(7586):336-343.
[29] Dirlam P T, Glass R S, Char K, et al. The use of polymers in Li-S batteries:A review[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2017, 55(10):1635-1668.
[30] Raza R, Akram N, Javed M S, et al. Fuel cell technology for sustainable development in Pakistan-An over-view[J]. Renewable and Sustainable Energy Reviews, 2016, 53:450-461.
[31] Li G, Zhu R, Yang Y. Polymer solar cells[J]. Nature Photonics, 2012, 6(3):153-161.
[32] Li Y. Molecular design of photovoltaic materials for polymer solar cells:Toward suitable electronic energy levels and broad absorption[J]. Accounts of Chemical Research, 2012, 45(5):723-733.
[33] Chen J, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices[J]. Accounts of Chemical Research, 2009, 42(11):1709-1718.
[34] He Y, Li Y. Fullerene derivative acceptors for high performance polymer solar cells[J]. Physical Chemistry Chemical Physics, 2011, 13(6):1970-1983.
[35] Ye L, Zhang S, Huo L, et al. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene[J]. Accounts of Chemical Research, 2014, 47(5):1595-1603.
[36] He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nature Photonics, 2012, 6(9):591-595.
[37] Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells[J]. Advanced Materials, 2015, 27(7):1170-1174.
[38] Lin Y, Zhan X. Non-fullerene acceptors for organic photovoltaics:an emerging horizon[J]. Materials Horizons, 2014, 1(5):470-488.
[39] Gao L, Zhang Z G, Xue L, et al. All-Polymer Solar Cells Based on Absorption-Complementary Polymer Donor and Acceptor with High Power Conver-sion Efficiency of 8.27%[J]. Advanced Materials, 2015.
[40] Dou C, Ding Z, Zhang Z, et al. Developing Conjugated Polymers with High Electron Affinity by Replacing a C C Unit with a B← N Unit[J]. Angewandte Chemie, 2015, 127(12):3719-3723.