FAN Quanlin1, Shi Peng1, LI Zijie2, BAI Qingjiang1, WANG Qin1
1. Space Science and Deep Space Exploration Study Center, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
2. Bureau of Major R&D Programs, Chinese Academy of Sciences, Beijing 100864, China
Abstract:In 2019, 29 probes all of which are robotic missions explored the Moon, Mars, asteroids, and the Sun, monitoring space weather at Lagrange 1, conducting astronomy observation at Lagrange 2, etc. In the 50th anniversary of human's landing on Moon, US pushed forward the Artermis Program, and China CE-4 lander's in-situ detection and Yutu 2 rover's patrol yielded promising scientific output. Besides, New Horizons'encounter of Kuiper Belt small body "2014 MU69" unveiled the geology and composition of the contact binary. Japan's Hayabusa 2 finished the sampling of Ryugu twice and started to return to Earth. Apart from Parker solar probe, several space weather monitoring missions, such as SOHO and WIND, "forgotten" at L1 in extended missions, were in great status of operation. In 2020 the launch window for Mars mission will open, and several Mars missions by China, US, and Europe-Russia, respectively will be coming into the spotlight.
范全林, 时蓬, 李自杰, 白青江, 王琴. 2019年深空探测热点回眸[J]. 科技导报, 2020, 38(1): 47-64.
FAN Quanlin, Shi Peng, LI Zijie, BAI Qingjiang, WANG Qin. Review of global deep space activities in 2019. Science & Technology Review, 2020, 38(1): 47-64.
[1] List of solar system probes[EB/OL].[2019-12-26]. https://en.wikipedia.org/wiki/List_of_Solar_System_probes.
[2] David D, Terri D. Space missions in 2020[J]. Australian Sky& Telescope, 2020, 1:36-37.
[3] 万卫星, 魏勇, 郭正堂, 等. 从深空探测大国迈向行星科学强国[J]. 中国科学院院刊, 2019, 34(7):748-755.
[4] 范全林, 王琴, 白青江. 2018年深空探测热点回眸[J]. 科技导报, 2019, 37(1):52-64.
[5] 华义, 邓敏, 梁赛玉. 嫦娥四号任务再获国际奖项[EB/OL]. (2019-12-05)[2019-12-10]. http://www.xinhuanet.com/2019-12/05/c_1125313376.htm.
[6] Spektr-RG commences sky scanning[EB/OL]. (2019-12-11)[2019-12-30]. http://en.roscosmos.ru/21145/.
[7] Anders F, Khalatyan A, Chiappini C, et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G=18[J]. Astronomy & Astrophysics, 2019, 628:1-32.
[8] Barros S D, Oesch P A, Labbé I, et al. The GREATS H β+[O iii] luminosity function and galaxy properties at z~ 8:Walking the way of JWST[J]. Monthly Notices of the Royal Astronomical Society, 2019, 498(2):2355-2366.
[9] 嫦娥四号任务科学成果交流会在京举行[EB/OL]. (2019-11-25)[2019-12-10]. http://cheos.org.cn/n132/n230/n18-088/c6808288/content.html.
[10] Liu J J, Ren X, Yan W, et al. Descent trajectory reconstruction and landing site positioning of Chang' E-4 on the lunar farside[J]. Nature Communications, 2019, 10:4229-4238.
[11] Li C L, Liu D W, Liu B, et al. Chang'E-4 initial spectroscopic identification of lunar far-side mantle-derived materials[J]. Nature, 569:378-382.
[12] 习近平会见探月工程嫦娥四号任务参研参试人员代表[EB/OL]. (2019-02-20)[2019-12-10]. http://www.xinhuanet.com/politics/leaders/2019-02/20/c_1124142092.htm.
[13] 嫦娥四号任务团队获英国皇家航空学会金奖[EB/OL]. (2019-11-27)[2019-12-10]. http://www.xinhuanet.com//mrdx/2019-11/27/c_138586399.htm.
[14] NASA seeks $1.6B to jump start new moon shot program called ‘Artemis’[EB/OL]. (2019-05-13)[2019-12-10]. https://www.al.com/news/2019/05/nasa-seeks-16bto-jump-start-new-moon-shot-program-called-artemis. html.
[15] Moon's south pole in NASA's landing sites[EB/OL]. (2019-04-16)[2019-12-10]. https://www.nasa.gov/feature/nasa-selects-teams-to-study-untouched-moonsamples.
[16] NASA selects teams to study untouched Moon samples[EB/OL]. (2019-03-12)[2019-12-10]. https://www.nasa.gov/feature/nasa-selects-teams-to-study-untouchedmoon-samples.
[17] NASA selects experiments for possible lunar flights in 2019[EB/OL]. (2019-02-22)[2019-12-10]. https://www.nasa.gov/press-release/nasa-selects-experiments-forpossible-lunar-flights-in-2019/.
[18] ESA and NASA to team up on lunar science[EB/OL]. (2019-03-28)[2019-12-10]. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ESA_and_NASA_to_team_up_on_lunar_science.
[19] The JAXA space exploration innovation hub center coproduces results on remote and automatic Control to Build Lunar Base[EB/OL]. (2019-03-28)[2019-12-10]. https://global.jaxa.jp/press/2019/03/20190328a.html.
[20] Beresheet a private Israeli moon mission[EB/OL].[2019-12-10]. https://www.planetary.org/explore/space-topics/space-missions/beresheet.html.
[21] Chandrayaan-2 Latest Updates[EB/OL]. (2019-11-13)[2019-12-26]. https://www.isro.gov.in/chandrayaan2-latest-updates.
[22] Mehdi B, Hurley D M, Stubbs T J, et al. Lunar soil hydration constrained by exospheric water liberated by meteoroid impacts[J]. Nature Geoscience, 2019(12):333-338.
[23] Lior R, Jaahnavee V, David A P. Thick ice deposits in shallow simple craters on the Moon and Mercury[J]. Nature Geoscience, 2019(12):597-601.
[24] Nathan RW, James F B, Thomas R W, et al. Evidence for recent and ancient faulting at Mare Frigoris and implications for lunar tectonic evolution[J]. Icarus, 2019(325):151-161.
[25] Peter B J, David E S, Paul K B, et al. Deep structure of the lunar south pole-Aitken Basin[J]. Geophysical Research Letters, 2019, 46(10):5100-5106.
[26] Meghan B. Weird ‘anomaly’ at the Moon's south pole may be a metal asteroid's grave[EB/OL]. (2019-06-10)[2019-12-17]. https://www.space.com/moon-south-poleanomaly-metal-asteroid-impact.html.
[27] Ann C V, Oleg K, Frank D, et al. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter[J]. Nature, 2019, 568:521-525.
[28] Oleg K, Ann C V, Franck M, et al. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations[J]. Nature, 2019, 568:517-520.
[29] Первые результаты научных приборов «ЭкзоМарса-2016» опубликованы в[EB/OL]. (2019-04-10)[2019-12-13]. http://press.cosmos.ru/pervye-rezultaty-nauchnyh-priborov-ekzomarsa-2016-opublikovany-v-nature.
[30] Rapin W, Ehlmann B L, Dromart G, et al. An interval of high salinity in ancient Gale crater lake on Mars[J]. Nature Geoscience, 2019, 12:889-895.
[31] World first French SEIS instrument detects ‘marsquake’[EB/OL]. (2019-04-23)[2019-12-13]. https://presse.cnes.fr/en/world-first-french-seis-instrument-detectsmarsquake.
[32] NASA's inSight lander captures audio of first likely ‘quake’ on Mars[EB/OL]. (2019-04-24)[2019-12-13]. https://www.nasa.gov/press-release/nasa-s-insight-lander-captures-audio-of-first-likely-quake-on-mars.
[33] Hiroki K, Norihiko S, Masahiro T, et al. Planetary-scale streak structure reproduced in high-resolution simulations of the Venus atmosphere with a low-stability layer[J]. Nature Communications, 2019, 10:23-33.
[34] NASA's Juno finds changes in Jupiter's magnetic field[EB/OL]. (2019-05-20)[2019-12-13]. https://www.nasa.gov/feature/jpl/nasas-juno-finds-changes-in-jupitersmagnetic-field.
[35] Moore K M, Cao H, Bloxham J, et al. Time variation of Jupiter's internal magnetic field consistent with zonal wind advection[J]. Nature Astronomy, 2019, 3:730-735.
[36] Samantha K T, Michael E B, Kevin P H.Sodium chloride on the surface of Europa[J]. Science Advances, 2019, 5(6):1-5.
[37] Linda S. Cassini-Huygens' exploration of the Saturn system:13 years of discovery[J]. Science, 2019, 364(6445):1046-1051.
[38] Matthew S T, Philip D N, Jeffrey N C, et al. Closerange remote sensing of Saturn's rings during Cassini's ring-grazing orbits and Grand Finale[J]. Science, 2019, doi:10.1126/science.aau1017.
[39] Less L, Militzer B, Kaspi Y, et al. Measurement and implications of Saturn's gravity field and ring mass[J]. Science, doi:10.1126/science.aat2965.
[40] Buratti B J, Thomas P C, Roussos E, et al. Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus[J]. Science, 2019, doi:10.1126/science.aat2349.
[41] Khawaja N, Postberg F, Hillier J, et al. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains[J]. Monthly Notices of the Royal Astronomical Society, 2019, 489(4):5231-5243.
[42] Stern S A, Weaver H A, Spencer J R, et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object[J]. Science, 2019, doi:10.1126/science.aaw9771.
[43] 魏奉思, 万卫星, 曹晋滨, 等. 空间天气科学服务和平利用空间[M]. 北京:科学出版社, 2018.
[44] Howard, R A, Vourlidas A, Bothmer V, et al. Near-Sun observations of an F-corona decrease and K-corona fine structure[J]. Nature, 2019, 576:232-236.
[45] Kasper, J C, Bale S D, Belcher J W, et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind[J]. Nature, 2019, 576:228-231.
[46] Bale S D, Badman S T, Bonnell J W, et al. Highly structured slow solar wind emerging from an equatorial coronal hole[J]. Nature, 2019, 576:237-242.
[47] McComas D J, Christian E R, Cohen C M S, et al. Probing the energetic particle environment near the Sun[J]. Nature, 2019, 576:223-227.
[48] Parker E N. Exploring the innermost solar atmosphere[J]. Natutre Astronony, 2019, 3:997-1006.
[49] Lina T. 25 years of science in the solar wind[EB/OL]. (2019-11-02)[2019-12-13]. https://www.nasa.gov/feature/goddard/2019/25-years-of-science-in-the-solarwind.
[50] Gurnett D A, Kurth WS. Plasma densities near and beyond the heliopause from the Voyager 1 and 2 plasma wave instruments[J]. Natutre Astronony, 2019, 3:1024-1028.
[51] Stone E C, Cummings A C, Heikkila B C, et al. Cosmic ray measurements from Voyager 2 as it crossed into interstellar space[J]. Natutre Astronony, 2019, 3:1013-1018.
[52] Krimigis SM, Decker RB, Roelof EC, et al. Energetic charged particle measurements from Voyager 2 at the heliopause and beyond[J]. Natutre Astronony, 2019, 3:997-1006.
[53] Richardson J D, Belcher J W, Garcia-Galindo P, et al. Voyager 2 plasma observations of the heliopause and interstellar medium[J]. Natutre Astronony, 2019, 3:1019-1023.
[54] Burlaga L F, Ness N F, Berdichevsky D B, et al. Magnetic field and particle measurements made by Voyager 2 at and near the heliopause[J]. Natutre Astronony, 2019, 3:1007-1012.
[55] Lauretta D S, Hergenrother C W, Chesley S R, et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu[J]. Science, 2019, doi:10.1126/science.aay3544.
[56] Sean P. X marks the spot:NASA selects site for asteroid sample Collection[EB/OL]. (2019-12-17)[2019-12-20]. https://www.nasa.gov/press-release/x-marks-the-spotnasa-selects-site-for-asteroid-sample-collection/.
[57] Lauretta D S, DellaGiustina D N, Bennett C A, et al. The unexpected surface of asteroid (101955) Bennu[J]. Nature, 2019, 568:55-60.
[58] DellaGiustina D N, Emery J P, Golish D R, et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Natutre Astronony, 2019, 3:341-351.
[59] Walsh K J, Jawin E R, Ballouz R, et al. Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface[J]. Nature Geoscience, 2019, 12:242-246.
[60] Watanabe S, Hirabayashi M, Hirata N, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu-A spinning top-shaped rubble pile[J]. Science, 2019, 364(6437):268-272.
[61] Kitazato K, Milliken R E, Iwata T, et al. The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy[J]. Science, 2019, 364(6437):272-275.
[62] Sugita S, Honda R, Morota T, et al. The geomorphology, color, and thermal properties of Ryugu:Implications for parent-body processes[J]. Science, 2019, 364(6437); doi:10.1126/science.aaw0422.
[63] The "Goodbye Ryugu" campaign[EB/OL]. (2019-2-22)[2019-12-17]. http://www.hayabusa2.jaxa.jp/en/topics/20191113e_SAYONARA_Ryugu/.
[64] 王琴, 邹永廖, 范全林. 美国公布未来6年深空发射计划, 加快月球轨道空间站建设[J]. 空间科学学报, 2018, 38(6):844.
[65] 国际合作谱写深空探测未来[EB/OL]. (2019-04-22)[2019-12-21]. http://www.xinhuanet.com/tech/2019-04/22/c_1124396683.htm.
[66] 宋婷婷, 范全林, 王琴. 美国公布重返月球的阿尔忒弥斯计划科学目标[J]. 空间科学学报, 2019, 39(6):717.
[67] NASA's Dragonfly will fly around Titan looking for origins, signs of life[EB/OL]. (2019-06-28)[2019-12-30]. https://www.nasa.gov/press-release/nasas-dragonfly-willfly-around-titan-looking-for-origins-signs-of-life.
[68] ESA's new mission to intercept a comet[EB/OL]. (2019-06-19)[2019-12-30]. http://www.esa.int/Science_Exploration/Space_Science/ESA_s_new_mission_to_intercept_a_comet.
[69] VOYAGE 2050 long-term planning of the ESA science pragramme[EB/OL]. (2019-11-15)[2019-12-13]. https://www.cosmos.esa.int/web/voyage-2050.
[70] N°22-2019:ESA ministers commit to biggest everbudget[EB/OL]. (2019-11-28)[2019-12-30]. https://www.esa.int/Newsroom/Press_Releases/ESA_ministers_commit_to_biggest_ever_budget.
[71] Roscosmos:Russia's lunar program is designed until 2040[EB/OL]. (2019-09-15)[2019-12-30]. https://www.tellerreport.com/tech/2019-09-14--roscosmos--russia-s-lunar-program-is-designed-until-2040-.SJz4oV05US.html.
[72] Research and development directorate[EB/OL].[2019-12-27]. http://www.kenkai.jaxa.jp/eng/publication/pamphlet/pdf/RD2018_eng.pdf.
[73] Exploration imagination innovation[EB/OL].[2019-12-27]. https://www.asc-csa.gc.ca/pdf/eng/publications/space-strategy-for-canada.pdf.
[74] 时蓬, 范全林. 2020年全球重要空间科学发射任务展望[J]. 空间科学学报, 2020, 40(1):1-4.
[75] 耿言, 周继时, 李莎, 等. 我国首次火星探测任务[J]. 深空探测学报, 2018, 5(5):399-405.
[76] Mars 2020 mission[EB/OL].[2019-12-27]. https://mars.nasa.gov/mars2020/.
[77] The ExoMars rover instrument suite looking for signatures of life on Mars[EB/OL]. (2019-09-01)[2019-12-27]. https://exploration.esa.int/web/mars/-/45103-roverinstruments.
[78] Jeremy R. Hope Mars mission:Launching the Arab world into the space race[EB/OL]. (2019-10-21)[2019-12-27]. https://www.space.com/hope-emirates-mars-mission.html.