1. College of Material Science and Design, Beijing Institute of Fashion Technology University, Beijing 100029, China;
2. Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology University, Beijing 100029, China;
3. Beijing Engineering Research Center of Textile Nano fiber, Beijing 100029, China
Ionic liquids with high thermal stability, non-volatility and good solubility are often used as green solvents and catalysts. Recently, the application of ionic liquids in flame retardant polymers is increasing. In this paper, the application and progress of ionic liquid as flame retardant in polymers are reviewed, including the main types, synthesis, mechanism, action mode and application of ionic liquid in different polymers. The catalytic carbonization of ionic liquid and multi-element synergy flame retardant mechanism are widely accepted. In terms of the future trend of ionic liquids, halogen-free and nano-flame retardant compounds show great potential in future. In addition, the designability of ionic liquids provides an opportunity for the synthesis of new flame retardants and broadens the application of polymer flame retardants by ionic liquids.
WANG Wenqing, LI Jiaqi, WANG Rui. , {{custom_author.name_en}}.
Application of functionalized ionic liquid in flame retardant polymers[J]. Science & Technology Review, 2022, 40(4): 118-128 https://doi.org/10.3981/j.issn.1000-7857.2022.04.012
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 桂豪冠. 功能性离子液体对聚乳酸热行为的影响[D]. 合肥:合肥工业大学材料学, 2014.
[2] Kuo P L, Tsao C H, Hsu C H, et al. A new strategy for preparing oligomeric ionic liquid gel polymer electrolytes for high-performance and nonflammable lithium ion batteries[J]. Journal of Membrane Science, 2016, 499:462-469.
[3] Kim H T, Kang J, Mun J, Oh S M, et al. Pyrroliniumbased ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2015, 4(2):497-505.
[4] 张连钢, 沈海波, 周鑫魁, 等. 离子液体液液萃取-高效液相色谱检测调味品中罗丹明B[J]. 中国食品添加剂, 2020, 31(4):148-154.
[5] Masoumeh M, Farhad S J. Introduction of a new catalyst containing an ionic liquid bridge on nanoporous Na+-montmorillonite for the synthesis of hexahydroquinolines and 1, 8-dioxo-decahydroacridines via Hantzsch condensation[J]. Journal of Molecular Structure, 2020, 12:17.
[6] Ko Y J, Choi K, Lee S, et al. Chromate adsorption mechanism on nanodiamond-derived onion-like carbon[J]. Journal of Hazardous Materials, 2016, 320(15):368-375.
[7] Zhu Z, Wei H, Wang F, et al. Ionic liquid-based monolithic porous polymers as efficient flame retardant and thermal insulation materials[J]. Polymer, 2019, 185:121947.
[8] Smaran K S, Badam R, Vedarajan R, et al. Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid[J]. Frontiers in Energy, 2018, 13(1):163-171.
[9] 郑炳云, 傅明连, 彭黎波, 等. 溴化1-乙烯基-3-烷基咪唑离子液体/环氧丙烯酸酯阻燃涂层性能研究[J]. 涂料工业, 2019, 49(1):13-17.
[10] Davis H, James J. Task-specific ionic liquids[J]. Chemistry Letters, 2004, 33(9):1072-1077.
[11] Li X, Liang D, Li K, et al. Synergistic effect of a hypophosphorous acid-based ionic liquid and expandable graphite on the flame-retardant properties of wood-plastic composites[J/OL].[2021-06-17]. https://doi.org/10.1007/s10973-020-09781-x.
[12] Jiang H C, Lin W C, Pan X H, et al. Difunctional effects of[Bmim] [DBP] on curing process and flame retardancy of epoxy resin[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(5):1707-1717.
[13] Wang Y H, Wu W H, Meng W H, et al. Activated carbon spheres@NiCo2(CO3)1.5(OH)3 hybrid material modified by ionic liquids and its effects on flame retardant and mechanical properties of PVC[J]. Composites Part B:Engineering, 2019, 179(15):107543.
[14] Nishita R, Kuroda K, Ota S, et al. Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution[J]. New Journal of Chemistry, 2019, 43(5):2057-2064.
[15] 王洪志. 离子液体改性空心材料阻燃TPU的研究[D]. 青岛:青岛科技大学安全工程系, 2018.
[16] Jiao C, Wang H, Chen X J. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(3):1471-1480.
[17] Gao Z, Deng Y, Hu X, et al. Determination of organophosphate esters in water samples using an ionic liquidbased sol-gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector[J]. Journal of Chromatography A, 2013, 1300:141-150.
[18] Zhang R C, Hong S M, Koo C M. Flame retardancy and mechanical properties of polyamide 6 with melamine polyphosphate and ionic liquid surfactant-treated montmorillonite[J]. Journal of Applied Polymer Science, 2014, 131(16):40648.
[19] Xu, Y J, Shi X H, Lu J H, et al. Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy[J]. Composites Part B:Engineering, 2020, 184:107673.
[20] He Z, Zhao Z, Xiao S, et al. Preparation of carbonbased hybrid particles and their application in microcellular foaming and flame-retardant materials[J]. RSC Advances, 2018, 8(47):26563-26570.
[21] Boukhriss A, Gmouh S, Hannach H, et al. Treatment of cotton fabrics by ionic liquid with PF6-anion for enhancing their flame retardancy and water repellency[J]. Cellulose, 2016, 23(5):3355-3364.
[22] Li C, Ma C, Li J. Highly efficient flame retardant poly (lactic acid) using imidazole phosphate poly(ionic liquid)[J]. Polymers for Advanced Technologies, 2020, 31(8):1765-1775.
[23] Shi Y Q, Fu T, Xu Y J, et al. Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance[J]. Chemical Engineering Journal, 2018, 354:208-219.
[24] Sofia K, Costas T, Eleni P, et al. Flame-retarded hydrophobic cellulose through impregnation with aqueous solutions and supercritical CO2[J]. Journal of Thermal Analysis & Calorimetry, 2013, 111(1):475-482.
[25] Nishita R, Kuroda K, Suzuki S, et al. Flame-retardant plant thermoplastics directly prepared by single ionic liquid substitution[J]. Polymer Journal, 2019, 51(8):781-789.
[26] Men Y, Siebenbürger M, Qiu X, et al. Low fractions of ionic liquid or poly(ionic liquid) can activate polysaccharide biomass into shaped, flexible and fire-retardant porous carbons[J]. Journal of Materials Chemistry A, 2013, 1(38):11887.
[27] Chen X, Ma C, Jiao C. Synergistic Effects between[Emim]PF6 and aluminum hypophosphite on flame retardant thermoplastic polyurethane[J]. RSC Advances, 2016, 6(71):67409-67417.
[28] Chen S, Li J, Zhu Y, et al. Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid[J]. Journal of Materials Chemistry A, 2013, 1(48):32902.
[29] Huang R, Guo X, Ma S, et al. Novel Phosphorus-nitrogen-containing ionic liquid modified metal-organic framework as an effective flame retardant for Epoxy Resin[J]. Polymers (Basel), 2020, 12(1):108.
[30] Gui H, Xu P, Hu Y, et al. Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide[J]. RSC Advances, 2015, 5(35):27814-27822.
[31] Zhu Z, Wei H, Wang F, et al. Ionic liquid-based monolithic porous polymers as efficient flame retardant and thermal insulation materials[J]. Polymer, 2019, 185:121947.
[32] Chen X, Feng X, Jiao C. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(2):851-857.
[33] Hu Y, Xu P, Gui H, et al. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide[J]. Composites Part A:Applied Science and Manufacturing, 2015, 77:147-153.
[34] Zhang W, Wu H, Meng W, et al. Synthesis of activated carbon and different types phosphomolybdate ionic liquid composites for flame retardancy of poly(vinyl chloride)[J]. Materials Research Express, 2019, 6:075303.
[35] Li X, Feng Y, Chen C, et al. Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(41):20500-20512.
[36] Wei H, Zhu Z, Sun H, et al. Graphene and poly(ionic liquid) modified polyurethane sponges with enhanced flame-retardant properties[J]. Journal of Applied Polymer Science, 2017, 134(44):45477.
[37] Cai W, Hu Y, Pan Y, et al. Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets:Enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane[J]. Journal of Colloid and Interface Science, 2020, 561(1):32-45.
[38] Jiao C, Zhang Y, Li S, et al. Flame retardant effect of 1-aminoethyl-3-methylimidazolium hexafluorophosphate in thermoplastic polyurethane elastomer[J].[2021-06-17]. https://doi.org/10.1007/s10973-020-09671-2.
[39] Jiao C, Jiang H, Chen X. Properties of fire agent integrated with molecular sieve and tetrafluoroborate ionic liquid in thermoplastic polyurethane elastomer[J]. Polymers for Advanced Technologies, 2019, 30(8):2159-2167.
[40] 高明, 王雨欣, 万梅, 等. 含氟硼酸盐型离子液对软质聚氨酯的协效阻燃[J]. 塑料, 2019, 33(4):33-38.
[41] Członka S, Strąkowska A, Strzelec K, et al. Melamine, silica, and ionic liquid as a novel flame retardant for rigid polyurethane foams with enhanced flame retardancy and mechanical properties[J]. Polymer Testing, 2020:106511.
[42] Yang X, Ge N, Hu L, et al. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system[J]. Polymers for Advanced Technologies, 2013, 24(6):568-575.
[43] Ding Y, Wang P, Wang Z, et al. Magnesium hydroxide modified by 1-n-tetradecyl-3-carboxymethyl imidazolium chloride and its effects on the properties of LLDPE[J]. Polymer Engineering & Science, 2011, 51(8):1519-1524.
[44] Chen S, Li J, Zhu Y, et al. Roles of anion of polyoxometalate-based ionic liquids in properties of intumescent flame retardant polypropylene[J]. RSC Advances, 2014, 4(62):32902.
[45] He Z, Zhao Z, Xiao S, et al. Preparation of carbonbased hybrid particles and their application in microcellular foaming and flame-retardant materials[J]. RSC Advances, 2018, 8(47):26563-26570.
[46] Xiao F, Wu K, Luo F, et al. An efficient phosphonatebased ionic liquid on flame retardancy and mechanical property of epoxy resin[J]. Journal of Materials Science, 2017, 52(24):13992-14003.
[47] Sonnier R, Dumazert L, Sébastien N, et al. Flame retardancy of phosphorus-containing ionic liquid based epoxy networks[J]. Polymer Degradation and Stability, 2016, 134:186-193.
[48] Xu Y J, Shi X H, Lu J H. Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy[J]. Composites Part B:Engineering, 2020, 184:107673.
[49] 冀茹鑫. 离子液体改性碳纳米管阻燃环氧树脂的研究[D]. 天津:天津科技大学化学工程系, 2017.
[50] Maka H, Spychaj T, Pilawka R. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems:Chemorheology and properties[J]. Express Polymer Letters, 2014, 8(10):723-732.
[51] Bentis A, Boukhriss Ai, Grancaric A, et al. Flammability and combustion behavior of cotton fabrics treated by the sol gel method using ionic liquids combined with different anions[J]. Cellulose, 2019, 26(3):2139-2153.
[52] Bentis A, Boukhriss A, Boyer D, et al. Development of flame retardant cotton fabric based on ionic liquids via sol-gel technique[J]. Iop Conference Series:Materials Science and Engineering, 2017, 254:122001.
[53] Zheng Y, Song J, Cheng B, et al. Syntheses of flame-retardant cellulose esters and their fibers[J]. Fibers & Polymers, 2016, 17(1):1-8.
[54] Yuan B, Zhang J, Yu J, et al. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels[J]. Science China Chemistry, 2016, 59(10):1335-1341.
[55] Yasemin S, Serhan K, Ahmet Ç, et al. Green alternative treatment for cellulosic fibers:Ionic liquid modification of abelmoschus esculentus fibers with methyl-tri-nbutyl ammonium methyl sulphate[J]. Materials Research Express, 2019, 6:085104.