Development status of ssDNA-GFET nano-biosensors toward wearable or implantable clinical applications
HAO Zhuang1,2, LIU Shaoqin2, PAN Yunlu1
1. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150000, China;
2. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China
Abstract:Single strand DNA probe-graphene field effect transistor (ssDNA-GFET) nano-biosensor holds great potential in wearable or implantable clinic applications. This paper reviews the development status of ssDNA-GFET, methods on optimizing biomarker sensing performance, detection of biomarkers in human biofluids, and the development status of flexible ssDNA-GFET toward wearable or implantable clinic applications. In the end, the paper demonstrates current limitations of the sensor that hampers its real clinic applications.
[1] 汪天书. 石墨烯衍生材料用于高性能电化学生物传感器的构建[D]. 长春: 吉林大学, 2015.
[2] Kim J, Kim M, Lee M S, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics[J]. Nature Communications, 2017, 8: 14997.
[3] Park J, Kim J, Kim S Y, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays[J]. Science Advances, 2018, 4(1): eaap9841.
[4] Hao Z, Zhu Y B, Wang X J, et al. Real-time monitoring of insulin using a graphene field-effect transistor aptameric nanosensor[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27504-27511.
[5] Wang C, Li Y, Zhu Y, et al. High-κ solid-gate transistor configured graphene biosensor with fully integrated structure and enhanced sensitivity[J]. Advanced Functional Materials, 2016, 26(47): 8575.
[6] Wang X J, Zhu Y B, Olsen T R, et al. A graphene aptasensor for biomarker detection in human serum[J]. Electrochimica Acta, 2018, 290: 356-363.
[7] 张崇华. 基于核酸放大技术和纳米材料的生物传感新方法的研究[D]. 长沙: 湖南大学, 2016.
[8] Hao Z, Wang Z R, Li Y J, et al. Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications[J]. Nanoscale, 2018, 10(46): 21681-21688.
[9] Li Y J, Zhu Y B, Wang C, et al. Selective detection of water pollutants using a differential aptamer-based graphene biosensor[J]. Biosensors and Bioelectronics, 2019, 126: 59-67.
[10] Li Y J, Wang C, Zhu Y B, et al. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching [J]. Biosensors and Bioelectronics, 2017, 89: 758-763.
[11] Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors[J]. Journal of the American Chemical Society, 2010, 132(51): 18012-18013.
[12] Lee Y J, Kim J, Jang B, et al. Graphene-based stretchable/wearable self-powered touch sensor[J]. Nano Energy, 2019, 62: 259-267.
[13] Cai B J, Wang S T, Huang L, et al. Ultrasensitive labelfree detection of PNA – DNA hybridization by reduced graphene oxide field-effect transistor biosensor[J]. ACS Nano, 2014, 8(3): 2632-2638.
[14] 王程. 基于SPR和石墨烯FET的无标记亲和型生物医学传感器研究[D]. 天津: 南开大学, 2014.
[15] Hao Z, Pan Y L, Huang C, et al. Sensitive detection of lung cancer biomarkers using an aptameric graphenebased nanosensor with enhanced stability[J]. Biomedical Microdevices, 2019, 21(3): 65.
[16] Zhu Y B, Wang C, Petrone N, et al. A solid dielectric gated graphene nanosensor in electrolyte solutions[J]. Applied Physics Letters, 2015, 106(12): 123503.
[17] 冯婷婷. 石墨烯场效应晶体管的制备及其特性研究[D]. 北京: 清华大学, 2014.
[18] Zhu Y B, Hao Y F, Adogla E A, et al. A graphenebased affinity nanosensor for detection of low-charge and low-molecular-weight molecules[J]. Nanoscale, 2016, 8(11): 5815-5819.
[19] Wang Z R, Hao Z, Wang X J, et al. A flexible and regenerative aptameric graphene-nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications[J]. Advanced Functional Materials, 2021, 31(4): 2005958.
[20] Hao Z, Luo Y, Huang C, et al. An intelligent graphenebased biosensing device for cytokine storm syndrome biomarkers detection in human biofluids[J]. Small, 2021, 17(29): 2101508.
[21] Yang Y B, Yang X D, Zou X M, et al. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors[J]. Advanced Functional Materials, 2017, 27(19): 1604096.
[22] Chen T Y, Loan P T K, Hsu C L, et al. Label-free detection of DNA hybridization using transistors based on CVD grown graphene[J]. Biosensors and Bioelectronics, 2013, 41: 103-109.
[23] Ping J L, Vishnubhotla R, Vrudhula A, et al. Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors[J]. ACS Nano, 2016, 10(9): 8700-8704.
[24] Kybert N J, Han G H, Lerner M B, et al. Scalable arrays of chemical vapor sensors based on DNA-decorated graphene[J]. Nano Research, 2014, 7(1): 95-103.
[25] Liu S H, Fu Y, Xiong C, et al. Detection of bisphenol A using DNA-functionalized graphene field effect transistors integrated in microfluidic systems[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23522-23528.
[26] Zhan B B, Li C, Yang J, et al. Graphene field-effect transistor and its application for electronic sensing[J]. Small, 2014, 10(20): 4042-4065.
[27] Kwon O S, Park S J, Hong J Y, et al. Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer[J]. ACS Nano, 2012, 6(2): 1486-1493.
[28] Hao Z, Pan Y L, Huang C, et al. Modulating the linker immobilization density on aptameric graphene field effect transistors using an electric field[J]. ACS Sensors, 2020, 5(8): 2503-2513.
[29] Hao Z, Pan Y L, Shao W W, et al. Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva[J]. Biosensors and Bioelectronics, 2019, 134: 16-23.
[30] Wang C Y, Cui X Y, Li Y, et al. A label-free and portable graphene FET aptasensor for children blood lead detection[J]. Scientific Reports, 2016, 6: 21711.
[31] An J H, Park S J, Kwon O S, et al. High-performance flexible graphene aptasensor for mercury detection in mussels[J]. ACS Nano, 2013, 7(12): 10563-10571.
[32] Gao N, Zhou W, Jiang X C, et al. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors[J]. Nano Letters, 2015, 15(3): 2143-2148.
[33] Gao N, Gao T, Yang X, et al. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14633-14638.
[34] Kwak Y H, Choi D S, Kim Y N, et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor[J]. Biosensors and Bioelectronics, 2012, 37(1): 82-87.
[35] Farid S, Meshik X, ChoI M, et al. Detection of interferon gamma using graphene and aptamer based FET-like electrochemical biosensor[J]. Biosensors and Bioelectronics, 2015, 71: 294-299.
[36] Wang Z R, Hao Z, Yu S F, et al. An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring[J]. Advanced Functional Materials, 2019, 29(44): 1905202.
[37] Kwak B W, Choi Y C, Lee B S. Small variations in the sheet resistance of graphene layers with compressive and tensile bending[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68: 33-37.
[38] Trung T Q, Tien N T, Kim D, et al. A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing[J]. Advanced Functional Materials, 2014, 24(1): 117-124.
[39] Trung T Q, Ramasundaram S, Lee N E. Infrared detection using transparent and flexible field-effect transistor array with solution processable nanocomposite channel of reduced graphene oxide and P(VDF-TrFE) [J]. Advanced Functional Materials, 2015, 25(11): 1745-1754.