脑科学被视为理解宇宙、自然与人类关系的“终极疆域”,人类从未停止对人脑的探索以及对其运行机制的模仿。过去几个世纪,人类对人脑的解剖构造和人脑各部分的独特功能有了一定的认识,但对人脑的信息处理机制、智能的形成等问题还需要持续深入探索。同时,借鉴人脑的信息处理方式开展类脑智能研究,对扩展与应用人类智能具有重要作用,是人工智能的下一个发展目标。从人工智能技术视角提出了大数据驱动的人脑信息处理机制、多脑区协同的人类智能形成机制、多标志物联动的脑疾病发展机理、多模态融合的类脑深度计算机理等关键科学问题,并建议从多学科交叉融合、产学研合作促进、国际化交流共享、战略性规划部署及科研型人才培养等方面加强脑科学及类脑智能研究。
Abstract
Brain science is regarded as the "ultimate frontier" to understand the relationship between universe, nature and human beings, and human beings have never stopped exploring human brain and imitating its mechanism. In the past few centuries, human beings have gained certain understanding of the anatomical structure of human brain and unique functions of each part of the human brain, but its information processing mechanism, the formation of intelligence and other issues need to be further explored. At the same time, it is of great significance to investigate the information processing way of human brain to the study of brain-like intelligence, which plays an important role in expansion and application of human intelligence and is the next goal of AI. Based on extensive research on brain science and brain-like intelligence research at home and abroad, this paper addresses some key scientific issues from a perspective of AI technology in terms of brain information processing mechanism driven by big data, human intelligence formation mechanism based on multiple brain regions collaboration, development mechanism of brain diseases with multi-marker linkage and the mechanism of brain-like depth computing based on multi-modal fusion. It is also suggested to strengthen brain science and brain-like intelligence research from the aspects of interdisciplinary integration, industry-university-research cooperation promotion, international exchange and sharing, strategic planning and deployment, training of scientific talents and so on.
关键词
脑科学 /
信息处理 /
类脑智能
{{custom_keyword}} /
Key words
brain science /
information processing /
brain-like intelligence
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Vatansever D, Smallwood J, Jefferies E. Varying demands for cognitive control reveals shared neural processes supporting semantic and episodic memory retrieval[J]. Nature Communication, 2021, 12: 2134.
[2] Zhang K, Förster R, He W J, et al. Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence[J]. Nature Neuroscience, 2021, 24: 1686-1698.
[3] Wang Y, Yin X X, Zhang Z Z, et al. A Cortico-basal ganglia-thalamo-cortical channel underlying short-term memory[J]. Neuron, 2021, doi: https://doi. org/10.1016/j.neuron.2021.08.002.
[4] Duan C A, Pan Y X, Ma G F, et al. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task[J]. Nature Communication, 2021, 12: 2727.
[5] Liu Y, Xin Y, Xu N L. A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making[J]. 2021, 109(12): 2009-2024.e6.
[6] Jia J, Fan Y, Luo H. Alpha-band phase modulates bottom-up feature processing[J]. Cerebral Cortex, 2022, 32(6): 1260-1268.
[7] Jing R, Yang C, Huang X, et al. Perceptual learning as aresult of concerted changes in prefrontal and visual cortex[J]. Current Biology, 2021, 31(20): 4521-4533.
[8] Qin L, Lyu B J, Shu S, et al. A heteromodal word-meaning binding site in the visual word form area under top-down frontoparietal control[J]. The Journal of Neuroscience, 2021, 41(17): 3854-3869.
[9] He L, Wei D, Yang F, et al. Functional connectome prediction of anxiety related to the COVID-19 pandemic[J]. American Journal of Psychiatry, 2021, 178(6): 530-540.
[10] Liu W, Wang C, He T, et al. Substantia nigra integrity correlates with sequential working memory in Parkinson's disease[J]. Society for Neuroscience, 2021, 41(29): 6304.
[11] Ye Z, Zhang G Y, Zhang Y S. The role of the subthalamic nucleus in sequential working memory in de novo Parkinson's disease[J]. Movement Disorders, 2021, 36(1): 87-95.
[12] Chen Y, Dang M, Zhang Z. Brain mechanisms underlying neuropsychiatric symptoms in Alzheimer's disease: A systematic review of symptom-general and-specific lesion patterns[J]. Molecular Neurodegeneration, 2021, 16(1): 38.
[13] Li Y, Li C Y, Xi W, et al. Rostral and caudal ventral tegmental area GABAergic inputs to different dorsal raphe neurons participate in opioid dependence[J]. Neuron, 2021, 109(23): 3893-3894.
[14] Liu D Y, Ju X, Gao Y, et al. From molecular to behavior: Higher order occipital cortex in major depressive disorder[J]. Cerebral Cortex, 2021(10): 10.
[15] Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572: 106-111.
[16] Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network[J]. Nature,2020, 577: 641-646.
[17] Wang Z, Liu Y, Zhou P, et al. A 148-nW reconfigurable event-driven intelligent wake-up system for AIoT nodes using an asynchronous pulse-based feature extractor and a convolutional neural network[J]. IEEE Journal of Solid-State Circuits, 2021, 56(11): 3274-3288.
[18] Hao S, Zhong S, Ji X, et al. Activating silent synapses in sulfurized indium selenide for neuromorphic computing[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60209-60215.
[19] Yang X, Chen Z, Wang Z, et al. A natural marmoset model of genetic generalized epilepsy[J]. Molecular Brain, 2022, 15(1): 1-4.
[20] Beauchamp M S, Oswalt D, Sun P, et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans[J]. Cell, 2020, 181(4): 774-783.
[21] Neuralink show & tell fall 2022 news roundup[EB/OL].[2023-03-14]. https://www.teslarati.com/elon-musk-neuralink-show-and-tell-fall-2022-updates.
[22] Rajeswaran P, Orsborn A L. Neural interface translates thoughts into type[J]. Nature, 2021, 593: 197-198.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}