全面电动化下乘用车永磁电机资源风险及少稀土化影响

佟鑫,孙锌,汪鹏,邱子桢,李建新,施建荣,王惠初,丁艺

科技导报 ›› 2023, Vol. 41 ›› Issue (21) : 114-126.

PDF(5032 KB)
PDF(5032 KB)
科技导报 ›› 2023, Vol. 41 ›› Issue (21) : 114-126. DOI: 10.3981/j.issn.1000-7857.2023.21.011
研究论文

全面电动化下乘用车永磁电机资源风险及少稀土化影响

作者信息 -
1. 中国地质调查局天津地质调查中心(华北地质科技创新中心),天津 300170
2. 中国地质科学院地质研究所,北京 100037
3. 中国汽车技术研究中心有限公司,天津 300300
4. 中国科学院城市环境研究所,中国科学院城市环境与健康重点实验室,厦门 361021
5. 中国科学院赣江创新研究院,赣州 341119
6. 中国科学院大学,北京 100049
7. 华东理工大学商学院,上海 200237
作者简介:
佟鑫,博士,研究方向为前寒武纪地质学、资源风险分析,电子信箱:tongxincgs@163.com

Research on resource risk and influence of rare earth reduction in permanent magnet motor of passenger vehicles under full electrification

Author information -
1. Tianjin Center, China Geological Survey (North China Center for Geoscience Innovation), Tianjin 300170, China
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
3. China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China
4. CAS Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
5. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
6. University of Chinese Academy of Sciences, Beijing 100049, China
7. School of Business, East China University of Science and Technology, Shanghai 200237, China

摘要

采用动态物质流分析方法,预测了中国乘用车电动化转型中对镨、钕、镝和铽4种稀土资源的需求,并辨识了潜在的供需风险。建议协调推进资源安全与“双碳”战略,深入探索资源减量与替代技术,科学推进自主开采与国际合作,进一步推进中国电动车可持续发展及稀土资源可持续利用。

Abstract

As a core key component of new energy passenger vehicles, permanent magnet motor that add rare earth minerals such as dysprosium and terbium can improve the basic characteristics such as remanence and coercivity. With the acceleration of the comprehensive electrification of vehicles, the prominent contradiction between supply and demand of rare earth minerals is highlighted. A dynamic material flow analysis method is used in this study to predict the demand for praseodymium, neodymium, dysprosium, and terbium resources in China's passenger car electrification transformation. This analysis identifies the supply and demand risks for different rare earth resources. To promote the sustainable development of electric vehicles and sustainable utilization of rare earth resources in China, the study suggests coordinating the promotion of resource security and the dual carbon strategy, exploring resource reduction and alternative technologies, and scientifically promoting independent mining and international cooperation.

关键词

碳中和 / 电动汽车 / 稀土 / 资源风险

Key words

carbon neutrality / electric vehicle / rare earth / resource risk

引用本文

导出引用
佟鑫, 孙锌, 汪鹏, 邱子桢, 李建新, 施建荣, 王惠初, 丁艺. 全面电动化下乘用车永磁电机资源风险及少稀土化影响[J]. 科技导报, 2023, 41(21): 114-126 https://doi.org/10.3981/j.issn.1000-7857.2023.21.011
TONG Xin, SUN Xin, WANG Peng, QIU Zizhen, LI Jianxin, SHI Jianrong, WANG Huichu, DING Yi. Research on resource risk and influence of rare earth reduction in permanent magnet motor of passenger vehicles under full electrification[J]. Science & Technology Review, 2023, 41(21): 114-126 https://doi.org/10.3981/j.issn.1000-7857.2023.21.011

参考文献

[1] 习近平 . 继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话[EB/OL]. (2020-12-12) [2022-07-27]. https://www. gov. cn/gongbao/content/2020/content_5570055.htm.
[2] 冯屹, 张鹏,赵冬昶,等. 面向碳中和的汽车行业低碳发展战略与转型路径(CALCP 2022)[M]. 北京: 中汽数据有限公司, 2022: 3-4.
[3] 中华人民共和国国务院办公厅. 新能源汽车产业发展规划(2021—2035年)[R]. 北京: 中华人民共和国国务院办公厅, 2020.
[4] 中华人民共和国国务院办公厅. 节能与新能源汽车产业发展规划(2012—2020年)[R]. 北京: 中华人民共和国国务院办公厅, 2012.
[5] 公安部 . 全国机动车保有量已达 3.93亿辆,为十年前的1.64 倍 [EB/OL]. (2021-12-03) [2022-07-27]. https://www.mps. gov. cn/n2255079/n6865805/n7355741/n735578-0/c8250433/content.html.
[6] 中华人民共和国自然资源部 .《中国矿产资源报告2022》[R]. 北京: 中华人民共和国自然资源部, 2022.
[7] 王晨阳, 汪鹏, 汤林彬, 等. 碳中和背景下中国电动车产业稀土需求预测[J]. 科技导报, 2022, 40(8): 50-61.
[8] 杨斌清, 张贤平 . 世界稀土生产与消费结构分析[J]. 稀土, 2014, 35(1): 110-118.
[9] Li X Y, Ge J P, Chen W Q, et al. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018-2030[J]. Resources, Conservation and Recycling, 2019, 145: 322-331.
[10] Xu G, Yano J, Sakai S-I. Scenario analysis for recovery of rare earth elements from end-of-life vehicles[J]. Journal of Material Cycles and Waste Management, 2016, 18(3): 469-482.
[11] Alonso E, Sherman A M, Wallington T J, et al. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies[J]. Environ Sci Technol, 2012, 46(6): 3406-3414.
[12] Zheng S, Zhu X, Xiang Z, et al. Technology trends, challenges, and opportunities of reduced-rare-earth PM motor for modern electric vehicles[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100012.
[13] Depraiter L, Goutte S. The role and challenges of rare earths in the energy transition[R]. Paris: HAL Open Science, 2023.
[14] Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285-1303.
[15] 中华人民共和国自然资源部 . 全国矿产资源规划(2016-2020 年)[EB/OL]. (2016-11-01) [2023-06-09]. https://mp.weixin. qq. com/s?__biz=MzU0ODE3NTQzOA==&mid=2247484307&idx=1&sn=da36ee84e6bd072b363-a635de1642d05&chksm=fb4268b2cc35e1a4ffe90b6647f9bf4d5d7184f804b680331c54c1e32301860c660625ddf6-5a&scene=27.
[16] 丁荣军, 刘侃 . 新能源汽车电机驱动系统关键技术展望[J]. 中国工程科学, 2019, 21(3): 56-60.
[17] 王昶, 孙晶, 左绿水, 等 . 新能源汽车关键原材料全球供应风险评估[J]. 中国科技论坛, 2018(4): 83-93.
[18] 中国汽车工业协会 . 2022 年汽车工业产销情况[EB/OL]. (2023-01-12) [2023-06-09]. https://mp.weixin.qq.com/s?__biz=MzA3MjQ4MzIwMw==&mid=2651873164-&idx=2&sn=059ceb10ca34e42d61220ac3adbec42&chk-sm=84f95760b38ede76d239187d5cc7bbacf4b546e24f3-c37f712dfd8ab8e5be7d58f2196803aad&scene=27.
[19] 中汽数据有限公司等 . 面向碳中和的汽车行业低碳发展战略与转型路径[M]. 北京: 中国机械工业出版社,2022.
[20] Wu T, Zhang M, Ou X. Analysis of future vehicle energy demand in China based on a gompertz function method and computable general equilibrium model[J]. Energies, 2014, 7(11): 7454-7482.
[21] U. S. Geological Survey. Mineral Commodity Summaries 2022[R]. Reston, Virginia: U.S. Geological Survey, 2022.
[22] 陈占恒 . 2021 年稀土产品进出口统计[J]. 稀土信息, 2022(2): 28-34.
[23] 吴一丁, 彭子龙, 赖丹, 等. 稀土产业链全球格局现状、趋势预判及应对战略研究[J]. 中国科学院院刊, 2023, 38(2): 255-264.
[24] 王惠初, 张家辉, 任云伟, 等 . 华北克拉通中北部麻粒岩带基础地质调查进展及相关问题讨论[J]. 华北地质, 2022, 45(1): 18-41.
[25] 郝美珍, 赵永岗, 张顺, 等 . 白云鄂博超大型 Nb-Fe-REE 矿床主矿矿体形态变化及深部找矿方向的探讨[J]. 地质调查与研究, 2018, 41(3): 167-175.
[26] 吉力强, 陈明昕, 顾虎, 等 . 轻稀土资源现状及在新能源汽车领域的应用[J]. 中国稀土学报, 2020, 38(2): 129-138.
[27] 付伟, 赵芹, 罗鹏, 等 . 中国南方离子吸附型稀土矿床成矿类型及其母岩控矿因素探讨[J]. 地质学报, 2022, 96: 1-25.
[28] 王路, 汪鹏, 王翘楚, 等 . 稀土资源的全球分布与开发潜力评估[J]. 科技导报, 2022, 40(8): 27-39.
[29] 蔡蔚, 贡骏, 张舟云, 等 . 节能与新能源汽车技术路线图2.0[M]. 北京: 机械工业出版社, 2020.
[30] Cai W, Wu X, Zhou M, et al. Review and development of electric motor systems and electric powertrains for new energy vehicles[J]. Automotive Innovation, 2021, 4(1): 3-22.
[31] Yang Z, Shang F, Brown I P, et al. Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications[J]. IEEE Transactions on Transportation Electrification, 2015, 3(1): 245-254.

基金

中国地质调查局地质调查项目(DD20230205,DD20230003,DD20221631);国家自然科学基金委员会联合基金项目(U2244211);上海市浦江人才计划项目(2020PJC029)
PDF(5032 KB)

183

Accesses

0

Citation

Detail

段落导航
相关文章

/