研究论文

黄岛金沙滩现代波痕沉积特征与水动力关系

  • 杨俊生 ,
  • 葛毓柱 ,
  • 吴琼 ,
  • 王晶 ,
  • 王淼
展开
  • 中国石油大学(华东)地球科学与技术学院, 青岛 266580
杨俊生,副教授,研究方向为沉积学与储层地质学,电子信箱:sydxyjs@126.com;葛毓柱(共同第一作者),硕士研究生,研究方向为沉积学,电子信箱:xiannizhike@163.com.

收稿日期: 2013-06-07

  修回日期: 2013-11-27

  网络出版日期: 2014-01-22

基金资助

教育部“国家级大学生创新创业训练计划”项目(111042502)

Characteristics of Ripples both in Morphology and Sediments in Golden Beach Coastal Zone, Huangdao and the Relationship with Hydrodynamics

  • YANG Junsheng ,
  • GE Yuzhu ,
  • WU Qiong ,
  • WANG Jing ,
  • WANG Miao
Expand
  • College of Geosciences, China University of Petroleum, Qingdao 266580, China

Received date: 2013-06-07

  Revised date: 2013-11-27

  Online published: 2014-01-22

摘要

黄岛金沙滩为典型的无障壁高能海岸,后滨发育有风成波痕,前滨滩槽和近滨上部可见大量浪成波痕。本文通过对上述3种环境下波痕的形态、沉积物粒度特征及前滨波痕形成水动力条件进行分析研究发现:1)后滨风成波痕波长、波高、迎流面及背流面相对浪成波痕较小,但波痕指数较大,而前滨滩槽、近滨上部波痕由陆向海波长、迎流面、背流面变小。2)风成波痕沉积物粒度波峰较粗,而浪成波痕沉积物粒度波谷较粗,从前滨到后滨沉积物粗组分减少,细组分增多;风成波痕、前滨滩槽波痕粒度频率分布曲线呈“双峰”特征,而近滨上部波痕粒度频率分布曲线主体呈“单峰”特征,风成波痕、滩槽波痕沉积物缺少悬浮组分;波痕沉积物分选-峰度图、分选-偏度图可以较好地判别沉积环境。3)平均粒径与流速、水深、弗劳德数Fr有很好的线性关系,前滨退潮时形成波痕的水动力条件具有水体浅、流速小和水动力弱的特点,可能与退潮时水速、水深变化较快有关。4)对前滨波痕沉积特征与相应流速、水深分别进行逐步回归分析,获得了形成环境的流速、水深的回归关系式。

本文引用格式

杨俊生 , 葛毓柱 , 吴琼 , 王晶 , 王淼 . 黄岛金沙滩现代波痕沉积特征与水动力关系[J]. 科技导报, 2014 , 32(1) : 22 -29 . DOI: 10.3981/j.issn.1000-7857.2014.002

Abstract

The Golden Beach is a typical high-energy coast without barrier, with wind ripples being developed in the backshore and wave ripples in the upside of the nearshore and swales in the foreshore. This paper analyzes the morphology, the sediment granularity and the hydrodynamic conditions of these three kinds of ripples developed in different environments, and it is found that, 1) The wind ripples in the backshore have a longer wavelength, a lower wave height, but a bigger ripple index as compared to the wave ripples. Both the wavelength and the scale of the wave ripples increase from the land to the sea. 2) For the wind ripples, it is the crest sediments that contain more coarse grains, while for the wave ripples, it is the valley sediments that contain more coarse grains, and the coarse grains increase their number from the backshore to the foreshore. The sediments of the wind ripples and the wave ripples in the swale lack the suspension components. The frequency distributions of the ripple grain size in the backshore and the foreshore take bimodal forms, while the frequency distribution of the ripple grain size in the upside of the nearshore takes a unimodal form. Using the sorting-kurtosis figure and the sorting-skewness figure of the ripple sediments, it is easy to distinguish the sedimentary environment. 3) The mean grain size of the sediments has a certain linear relationship with the flow velocity, the water depth and the Froude number Fr. According to the experimental results, the ripples in the foreshore formed in the falling tide indicate a weak hydrodynamic condition, which may be related to the quick change of the flow velocity and the water depth. 4) The regression equations between the sedimentary characteristics, the flow velocity and the water depth are obtained after the stepwise regression analyses.

参考文献

[1] 郑伟, 齐永安, 刘顺喜, 等. 河南云台山世界地质公园云梦山组波痕类 型及其成因分析[J]. 河南理工大学学报: 自然科学版, 2008, 27(4): 399-404. Zheng Wei, Qi Yong'an, Liu Shunxi, et al. Classification and genetic analysis of ripple marks on Yunmengshan Formation of Yuntai shan world geopark, Henan province[J]. Journal of Henan Polytechnic University: Natural Science Edition, 2008, 27(4): 399-404.
[2] Simons D B, Richardson E V, Nordin C F. Sediment sorting in alluvial channels[M]//Middleton G V. Primary Sedimentary Structures and Their Hydrodynamic Interpretation, Special Publication No 12. Tulsa OK: Society of Economic Paleontologists and Mineralogists, 1965: 34-52.
[3] Blatt H, Middleton G V, Murray R C. Origin of sedimentary rock[M]. 2nd ed. Englewood Cliffs, N J: Prentice-Hall, 1980: 782.
[4] Allen P A. Reconstruction of ancient sea conditions with an example from the Swiss Molasse[J]. Marine Geology, 1984, 60(1-4): 455-473.
[5] 国家能源局. 中华人民共和国石油天然气行业标准SY/T 5434—2009 碎屑岩粒度分析方法[S]. 北京: 国家能源局, 2009. National Energy Administration. Law of the People's Republic of Petroleum and Natural Gas Industry Standard, SY/T 5434—2009 Clastic rock grain size analysis methods[S]. Beijing: National Energy Administration, 2009.
[6] Folk P I,Ward W D. Brazos Reviver bar:A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1975(27): 3-26.
[7] 肖晨曦, 李志忠. 粒度分析及其在沉积学中应用研究[J]. 新疆师范大学 学报: 自然科学版, 2006, 25(3): 118-123. Xiao Chenxi, Li Zhizhong. The research summary of grain size analysis and its application in the sedimentation[J]. Journal of Xinjiang Normal University: Natural Sciences Edition, 2006, 25(3): 118-123.
[8] 姜在兴, 陈世悦, 邱隆伟, 等. 沉积学[M]. 北京: 石油工业出版社, 2003. Jiang Zaixing, Chen Shiyue, Qiu Longwei, et al. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003.
[9] Vanoni V A. Factors determining bed forms of alluvial streams[J]. Journal of the Hydraulics Division, 1974, 100(3): 363-377.
[10] 高健, 严钦尚, 许世远. 滦河中游现代河流沉积构造与水动力的关系[J]. 沉积学报, 1983, 1(1): 27-41. Gao Jian, Yan Qingshang, Xu Shiyuan. The relationship between sedimentary structures and hydrodynamic in the middle reach of the Luan River[J]. Acta Sedimentologica Sinica, 1983, 1(1): 27-41.
[11] 冯兴雷, 邓宏文, 马立祥, 等. 利用砂岩中波痕的物理参数分析沉积环 境[J]. 沉积与特提斯地质, 2010, 30(3): 53-57. Feng Xinglei, Deng Hongwen, Ma Lixiang, et al. Applications of physical parameters for the ripple marks in sandstones to the analysis of sedimentary environments[J]. Deposition and Tethyan Geology, 2010, 30 (3): 53-57.
[12] 聂逢君, 姜美珠, 吴河勇, 等. 利用砂岩中波痕的特征估算沉积环境的 物理参数——以宣化地区长城系下部石英砂岩为例[J]. 沉积学报, 2002, 20(2): 255-260. Nie Fengjun, Jiang Meizhu, Wu Heyong, et al. Estimates of physical parameters in sedimentary environments by means of ancient ripple marks-case of changchengian quartz sandstones in Xuanhua Area, northwest Hebei[J]. Acta Sedimentologica Sinica, 2002, 20(2): 255-260.
[13] Harms J C, Southard J B, Spearing D R, et al. Depositional enviroments as interpreted from primary sedimentary structures and sequences[M]. Dallas, TX: Society of Economic Paleontologists and Mineralogists, 1975: 161.
[14] 周丽清, 姜在兴, 林承焰, 等. 黄河下游的河浪作用及波痕特征[J]. 石 油大学学报: 自然科学版, 1991, 15(6): 22-27. Zhou Liqing, Jiang Zaixing, Lin Chengyan, et al. Fluviowave and ripple mark characteristics in lower reach of Yellow River[J]. Journal of China University of Petroleum: Edition of Natural Science, 1991, 15(6): 22-27.
[15] Homewood P, Allen P A. Wave-tide and current-controlled sandbodies of miocene molasse, western Switzcrland[J]. Bulletin of American Association of Petroleum Geologists, 1981, 65(12): 2534-2545.
[16] Diem B. Analytical method for estimating palaeowave climate and water depth from wave ripple marks[J]. Sedimentology, 1985, 32: 705-720.
[17] 王清河, 常兆光, 李荣华. 随机数据处理方法[M]. 3版. 北京: 中国石油 大学出版社, 2005. Wang Qinghe, Chang Zhaoguang, Li Ronghua. Random data processing method[M]. 3th ed. Beijing: China Petroleum University Press, 2005.
[18] 刘仁云. 数学建模方法与数学实验[M]. 1版. 北京: 中国水利水电出版 社, 2011. Liu Renyun. Mathematical modeling methods and mathematical experiments[M]. 1st ed. Beijing: China WaterPower Press, 2011.
文章导航

/