研究论文

基于Fluent的分级尾砂料浆满管流输送技术

  • 王新民 ,
  • 贺严 ,
  • 陈秋松
展开
  • 中南大学资源与安全工程学院, 长沙 410083
王新民,教授,研究方向为采矿与充填技术,电子信箱:wxm1958@126.com

收稿日期: 2013-08-20

  修回日期: 2013-10-28

  网络出版日期: 2014-01-22

基金资助

“十一五”国家科技支撑计划项目(2008BAB32B03)

Full Pipeline Flowing Transportation Technology of Classified Tailings Based on the Fluent Software

  • WANG Xinmin ,
  • HE Yan ,
  • CHEN Qiusong
Expand
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Received date: 2013-08-20

  Revised date: 2013-10-28

  Online published: 2014-01-22

摘要

针对某矿山分级尾砂充填料浆自由下落对管道产生严重磨损的现状,引入分级尾砂料浆满管流输送技术。基于Fluent软件,并结合运用工程流体力学和深井管道输送相关理论,对不同充填倍线条件下的分级尾砂料浆满管流输送的工作特性进行了数值分析。结果表明,满管流输送相对于自由下落系统可以大大降低料浆对管道的冲击磨损和管道所受的压力,且分级尾砂满管流输送系统的管道出口压力随充填倍线的增大而减小,系统总压力基本保持不变;管径的变化对充填料浆的水力坡度具有很大影响,变径管措施有助于深井充填中实现满管流输送;当充填倍线N=6.0时,该矿山分级尾砂在实现满管流输送的同时,弯管处压力损失达到最小值0.247 MPa。

本文引用格式

王新民 , 贺严 , 陈秋松 . 基于Fluent的分级尾砂料浆满管流输送技术[J]. 科技导报, 2014 , 32(1) : 53 -58 . DOI: 10.3981/j.issn.1000-7857.2014.007

Abstract

In view of the serious wear on the pipeline owing to the free falling of the classified tailing slurry, a classified tailing slurry full pipeline flowing transportation technology is adopted. Combining with the related transportation theory of Engineering Fluid Mechanics and for deep level pipelines, the classified tailing slurry under different stowing gradient conditions with full pipeline flowing characteristics of transportation is numerically simulated based on the Fluent software. It is shown that compared with the free fall system, the full pipeline flowing system greatly reduces the impact abrasion and pressure to the pipeline. The outlet pressure of the classified tailing full pipeline flowing conveying system increases with the stowing gradient, and the total pressure remains constant; the diameter has a great influence on the hydraulic slope of the filling slurry, the measures of adjusting the pipeline are beneficial to the full pipeline flowing transportation in deep mines; when the pipe length-backfilling depth ratio N=6.0, the pressure loss of the classified tailings reaches the minimum of 0.247 MPa.

参考文献

[1] 王新民, 古德生, 张钦礼, 等. 深井矿山充填理论与管道输送技术[M]. 长沙: 中南大学出版社, 2005: 28-31. Wang Xinmin, Gu Desheng,Zhang Qinli, et al. Theory and technology of deep mine backfilling [M]. ChangSha: Central South University Press,2005: 28-31.
[2] 郑晶晶. 金川矿区破损充填钻孔永久修复使用综合技术研究[D]. 长 沙: 中南大学, 2009: 48-76. Zheng Jingjing. A comprehensive study about repeated repair technique of failed pipeline ivn vertical backfill hole in Jinchuan Mines[D]. Changsha: Central South University, 2009: 48-76.
[3] Steward N R, Spearing A J S. Wear of backfill pipelines in South African gold mines[C]//4th International Conference on Bulk Materials, Storage, Handling and Transportation: 7th International Symposium on Freight Pipelines Barton, ACT: Institution of Engineers, Australia, 1992: 115-121.
[4] 刘同有. 充填采矿技术与应用[M]. 北京: 冶金工业出版社, 2001: 42-57. Liu Tongyou. Backfilling mining technology and application[M]. Beijing: Metallurgy Industry Press, 2001: 42-57.
[5] 李勇, 刘志友, 安亦然.介绍计算流体力学通用软件—Fluent[J]. 水动力 学研究与进展A辑, 2001, 16(2): 254-258. Li Yong, Liu Zhiyou, An Yiran. A brief introduction to Fluent-A general purpose CFD code[J]. Chinese Journal of Hydrodynamics, 2001, 16(2): 254-258.
[6] Cooke R. Modeling of the flow of highly concentrated backfill slurries in mine fill[J]. Johannesburg SAIMM, 2008, 23: 225-233.
[7] Varughese K. In situ pipeline rehabilitation techniques, equipment improved[J]. Oil and Gas Journal, 1993, 91: 54-57.
[8] 王新民. 基于深井开采的充填材料与管输系统的研究[D]. 长沙: 中南 大学, 2005. Wang Xinmin. A study of filling materials and pipeline transportation systems in deep mines[D]. Changsha: Central South University, 2005.
[9] 许毓海, 许新启. 高浓度充填流变特性及自流输送参数的合理确定[J]. 矿冶, 2009, 13(3): 16-19. Xu Yuhai, Xu Xinqi. High concentration backfilling rheological properties and reasonably determine the parameters of self-flowing transportation[J]. Mining and Metallurgy, 2009, 13(3): 16-19.
[10] Steward N R, Spearing A J S. Effect of particle sharpness of the wear of backfill pipelines[J]. Journal of the South African Institute of Mining and Metallurgy, 1993, 93(5): 129-134.
[11] 王新民, 潘常甲, 徐东升. 变径管满管流系统垂直管道最大高度的确 定[J]. 矿业研究与开发, 2008, 26: 76-85. Wang Xinmin, Pan Changjia, Xu Dongsheng. Determine the maximum safe height of adjustable vertical pipe in full pipe flow system[J]. Mining Research and Development, 2008, 26: 76-85.
[12] 王新民, 张德明, 张钦礼, 等. 基于FLOW-3D软件的深井膏体管道自 流输送性能[J]. 中南大学学报, 2011, 42(7): 124-131. Wang Xinmin, Zhang Deming, Zhang Qinli, et al. Pipeline self-flowing transportation property of paste based on FLOW-3D software in deep mine[J]. Journal of Central South University, 2011, 42(7): 124-131.
[13] 韩占忠, 王敬, 兰小平. FLUENT流体工程仿真计算实例与应用[M]. 北 京: 北京理工大学出版社, 2004: 125-160. Han Zhanzhong, Wang Jing, Lan Xiaoping. Simulation examples and application of FLUENT[M]. BeiJing: Beijing Institute of Technology Press, 2004: 125-160.
[14] 吴立春. FLUENT软件在水力学中的应用与进展[J]. 重庆教育学院学 报, 2009, 3: 21-28. Wu Lichun. Development and application of FLUENT software in the hydraulics[J]. Journal of Chongqing College of Education, 2009, 3: 21-28.
[15] 费祥俊. 浆体与粒状物料输送水力学[M]. 北京: 清华大学出版社, 1994: 76-92. Fei Xiangjun. Paste and granular material handling hydraulics[M]. Beijing: Tsinghua University Press, 1994: 76-92.
文章导航

/