采矿方法的选择关系到矿山的经济效益和资源效益,是矿山建设和生产的核心内容。采矿方法选择是一个复杂的系统工程,具有决策多属性、确定性与不确定性共存的特点,同时传统的经验对比法具有较大的主观随意性,本文将信息论和模糊物元分析理论有机地结合,针对采矿方法的评价优选,提出了信息熵模糊物元分析法。评判优选过程中,选择如采矿成本、损失率、贫化率等决策指标;将待选择方法指标转换评判矩阵,通过信息熵模糊物元分析法得到各因素权重向量,利用熵模糊物元原理计算出各方法的相对贴近度。选取国内某矿山采矿方法为例,从安全、技术、经济3个方面综合考虑评判指标,对拟选用的3种方案进行综合评判,计算得出3种待选方法的相对贴近度分别为96.18%、81.02%、92.18%,从而确定最优方法,为矿山采矿方法的优选提供依据。该优选方法与模糊优选法有较好的一致性,且计算方法简单,评价结果直观、准确可靠,具有信息利用率高等优点。
The selection of mining method is related to the economic and resource benefits of mines, and is the core of mine construction and production. The choice of mining method is a complex systematic engineering, which is featured by multiple decision factors, coexistence of certainty and uncertainty, and at the same time the traditional experience contrast method has subjective randomness. To aim at the evaluation and selection of mining methods, an information entropy and fuzzy matter element analysis method is proposed in this paper. In the process of evaluation and selection, decision factors such as mining cost, dilution rate, and loss rate are selected. the detailed steps are as follows. Firstly, the factors of selected mining methods are transformed to evaluation matrix; secondly, the weight vectors of the factors are obtained by the information entropy and fuzzy matter element analysis method; lastly, the relative closeness of all the methods are given by utilizing entropy fuzzy matter element theory. A domestic mine is taken as an example. Three mining schemes are evaluated by the proposed method in terms of, security, technology, and economic indexes. Their relative closeness are 96.18%, 81.02% and 92.18%, respectively, and the optimal method is then determined, which has better consistency with the fuzzy optimum seeking method. The new method lays a basis for the selection of mining method, and is simple, intuitive, accurate and reliable, with a high utilization of information.
[1] 郭金峰. 我国地下金属矿山采矿技术现状和发展趋势[C]// 中国冶金 矿山企业协会. 2005年全国金属矿山采矿学术研讨与技术交流会论 文集. 北京: 中国冶金矿山企业协会, 2005. Guo jinfeng. Present Situation and Development Trend of mining technology in underground metal mines in China[C]// China Metallurgical Mining Enterprise Association. The National Mining for Metal Mines in 2005 Academic Discussions and Proceedings of the Seminar. Beijing: China Metallurgical Mining Enterprise Association, 2005.
[2] 姚金蕊, 李夕兵, 周子龙."三下"矿体开采研究[J]. 地下空间与工程学 报. 2005, 1(7): 1073-1075. Yao Jinrui, Li Xibing, Zhou Zilong. Study of the excavation for the under-three-objects ore body[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(7): 1073-1075.
[3] 王新民, 赵彬, 张钦礼. 基于层次分析和模糊数学的采矿方法选择[J]. 中南大学学报:自然科学版, 2008, 39(5): 875-880. Wang Xinmin, Zhao Bin, Zhang Qinli. Mining method choice based on AHP and fuzzy mathematics[J]. Journal of Central South University: Science and Technology Edition, 2008, 39(5): 875-880.
[4] 饶运章, 何少博, 陈辉, 等. 基于未确知测度理论的采矿方法优选[J]. 中国矿业2012, 21(S1): 337-342. Chen Yunzhang, He Shaobo, Chen Hui, et al. Optimization of mining method based on uncertainty measurement theory[J]. China Mining Magazine, 2012, 21(S1): 337-342.
[5] 史秀志, 周健, 董凯程等. 城市岩体爆破方案优选的熵模糊物元决策 模型[J]. 爆破, 2009, 36(04): 29-33. Shi Xiuzhi, Zhou Jian, Dong Kaicheng, et ai. Fuzzy matter -element model based on coefficients of entropy in scheme optimization of rock blasting in urban area[J]. Blasting, 2009, 36(04): 29-33.
[6] 李丽, 汪明武. 熵模糊物元分析方法在水库正常高水位决策中的应用[J]. 水利水运工程学报, 2006(4): 62-66. Li Mingli, Wang Mingwu. Application of information entropy fuzzy matter -element method in decision of normal high water level of reservoirs[J]. Hydro-Science and Engineering, 2006(4): 62-66.
[7] 王广月, 王有志. 基于AHP法的信息熵模糊物元模型在地基处理方案 评价中的应用[J]. 山东大学学报:工学版, 2003, 33(4): 457-460. Wang Guangyue, Wang Youzhi. Application of information entropy fuzzy matter-element model based on AHP for projects assessment of foundation treatment[J]. Journal of Shandong University: Engineering Science Edition, 2003, 33(4): 457-460.
[8] 罗君君, 郑俊杰, 孙玲. 基于语言变量和熵权的公路软基处理方案模 糊物元决策分析法[J]. 公路交通科技, 2009, 26(5): 12-16. Luo Junjun, Zheng Junjie, Sun Ling. Selection of alternatives of weak subgrade treatment using linguistic variable and entropy based fuzzy matter -element decision analysis method[J]. Journal of Highway and Transportation Research and Development, 2009, 26(5): 12-16.
[9] 史秀志, 周健. 隧道围岩分级判别的未确知均值聚类模型[J]. 土木建 筑与环境工程, 2009, 31(2): 62-67. Shi Xiuzhi, Zhou Jian. Application of uncertainty average clustering measurement model to classification of tunnel surrounding rock[J]. Journal of Civil, Architectural & Environmental Engineering, 2009, 31 (2): 62-67.
[10] 褚晓杰, 严慧峰, 周任军, 等. 熵权属性识别模型在电网公司综合评 价体系中的应用[J]. 电力科学与技术学报, 2007, 22(4): 56-59. Zhu Xiaojie, Yan Huifeng, Zhou Renjun, et al. Application of entropy coefficient based attribute recognition model in comprehensive evaluation for grid company[J]. Journal of Electric Power Science and Technology, 2007, 22(4): 56-59.
[11] 王新民, 秦健春, 张钦礼, 等. 基于AHP-TOPSIS评判模型的姑山驻留 矿采矿方法优选[J]. 中南大学学报:自然科学版, 2013, 44(3): 1131-1137. Wang Xinmin, Qin Jianchun, Zhang Qinli, et al. Mining method optimization of Gu Mountain stay ore based on AHP -TOPSIS evaluation model[J]. Journal of Central South University: Science and Technology Edition, 2013, 44(3): 1131-1137.