研究论文

斜井水力压裂三维裂缝动态扩展数值模拟

  • 彭成勇 ,
  • 朱海燕 ,
  • 刘书杰 ,
  • 闫传梁
展开
  • 1. 中海油研究总院, 北京 100027;
    2. 西南石油大学油气藏地质及开发工程国家重点实验室, 成都 610500;
    3. 中国石油大学油气资源与探测国家重点实验室, 北京 102249
彭成勇,工程师,研究方向为油气田储层改造技术,电子信箱:pengchy@cnooc.com.cn

收稿日期: 2013-10-09

  修回日期: 2013-12-12

  网络出版日期: 2014-02-14

基金资助

国家自然科学基金重点项目(51134004);中海石油有限公司综合科研项目(2013-YXZHKY-002)

Three-dimensional Numerical Simulation of Hydraulic Fracture Dynamic Propagation of Deviated Well

  • PENG Chengyong ,
  • ZHU Haiyan ,
  • LIU Shujie ,
  • YAN Chuanliang
Expand
  • 1. China National Offshore Oil Corporation Research institute, Beijing 100027, China;
    2. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    3. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China

Received date: 2013-10-09

  Revised date: 2013-12-12

  Online published: 2014-02-14

摘要

斜井的近井筒效应较为复杂,若存在射孔相位误差,极易在地层和水泥环交界面处产生微环隙,引起较高的近井压降,甚至在微环隙内产生砂堵,造成压裂施工失败。对于斜井水力压裂裂缝三维几何形态的预测,一直是水力压裂领域的难题。本文采用黏弹性损伤cohesive孔压单元,考虑套管、水泥环、地层、射孔孔眼和微环隙对水力压裂的影响,建立了斜井的水力压裂三维裂缝形态的有限元模型。同时,考虑水力压裂过程中储层岩石渗透率和孔隙度的动态演变,对渤海湾地区20°井斜角的C5井开展了水力压裂裂缝动态扩展的数值模拟研究,计算得到的井底压力曲线与现场施工曲线一致。研究了斜井水力裂缝和微环隙的起裂和扩展机理。微环隙在水力压裂的初始阶段沿井眼周向和轴向同时起裂并扩展,随着水力裂缝的扩展而逐渐闭合,对于具有较复杂近井筒效应的硬地层大斜度井而言,微环隙的起裂和多条裂缝的产生,极易导致压裂失败。斜井水力裂缝近似两翼对称,易向地应力较小的盖层扩展,缝高较难控制。数值模拟结果为现场水力压裂的设计提供理论指导。

本文引用格式

彭成勇 , 朱海燕 , 刘书杰 , 闫传梁 . 斜井水力压裂三维裂缝动态扩展数值模拟[J]. 科技导报, 2014 , 32(2) : 37 -43 . DOI: 10.3981/j.issn.1000-7857.2014.2.006

Abstract

The near wellbore fractures are very complex in deviated well. If the perforations are not along with the maximum principal stress direction, a micro-annulus between the cement sheath and rock formation interface is likely to generate. For a long time, it has been difficult to simulate the three-dimensional geometries of hydraulic fracture in deviated well. In this paper, using viscoelastic continuum damage pore pressure cohesive elements and considering casing, cement, formation, perforation and the micro annulus, a three-dimensional numerical simulation model of hydraulic fracture dynamic propagation of deviated well is established. Then, considering the dynamic evolution of permeability and porosity of the pay zone, the hydraulic fracture dynamic propagation of a 20° deviated well in the Bohai Basin oilfield is calculated, and the calculated well bottom-hole pressure curve is consistent with the field hydraulic fracturing treatment curve. The hydraulic fracture and micro annulus initiation and propagation mechanism are analyzed. The micro annulus initiates and propagates simultaneously alone the well axial and circumferential directions at the initial stage of hydraulic fracturing, and then it closes with the propagation of the hydraulic fracture. The two hydraulic fracture wings of the deviated well are almost symmetrical, and easily propagate into the caprocks where the in-situ stress is smaller, that is, the fracture height of the deviated well is hard to control.

参考文献

[1] Chen Z, Bunger A P, Zhang X, et al. Cohesive zone finete element-based modling of hydraulic fractures[J]. Acta Mechanica Solida Sinica, 2009, 22(5): 443-452.
[2] Wang W, Dahi Taleghani A. Emergence and propagation of delamination cracks along the casing-cement interface[C]. ARMA 12-449, 46th US Rock Mechanics/Geomechanics Symposium. Chicago, IL, USA, June 24-27, 2012.
[3] Zhang G M, Liu H, Zhang J, et al. Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2010, 72(3): 310-317.
[4] Nagel N, Damjanac B, Garcia X, et al. Discrete element hydraulic fracturing modeling -evaluating changes in fracture transmissivity[C]. Canadian Unconventional Resources Conference. Alberta, Canada, November 15-17, 2011.
[5] Rahman M M, Hossain M M, Crosby D G, et al. Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells[J]. Journal of Petroleum Science and Engineering, 2002, 35(3-4): 127-150.
[6] Hossain M M, Rahman M K. Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2008, 60(2): 86-104.
[7] Zhang X, Jeffrey R G, Bunger A P, et al. Initiation and growth of a hydraulic fracture from a borehole under toughness-or viscosity-dominated conditions[C]. ARMA 10-148, 44th US-Canada Rock Mechanics Symposium. Salt Lake City, UT, USA, June 27-30, 2010.
[8] Zhang X, Jeffrey R G, Thiercelin M. Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries[J]. Journal of Geophysical Research, 2009, 114(B12): 402-406.
[9] Nagel N B, Sanchez-Nagel M, Lee B. Gas shale hydraulic fracturing: a numerical evaluation of the effect of geomechanical parameters[C]. SPE 152192, SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 6-8, 2012.
[10] Tang C A, Tham L G, Lee P K K. Coupling analysis of flow,stress and damage (FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(4): 477-489.
[11] Yang T H, Tham L G, Tang C A, et al. Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks[J]. Rock Mechanics and Rock Engineering, 2004, 37(4): 251-275.
[12] Wang S Y, Sun L, Au A S K, et al. 2D-numerical analysis of hydraulic fracturing in heterogeneous geo-materials[J]. Construction and Building Materials, 2009, 23(6): 2196-2206.
[13] 薛炳, 张广明, 吴恒安, 等. 油井水力压裂的三维数值模拟[J]. 中国科 学技术大学学报, 2008, 38(11): 1322-1325. Xue Bing, Zhang Guangming, Wu Heng'ang, et al. Hydraulic fracturing three -dimensional numerical simulation in oil well[J]. Journal of China Science and Technology University, 2008, 38(11): 1322-1325.
[14] 连志龙, 张劲, 王秀喜, 等. 水力压裂扩展特性的数值模拟研究[J]. 岩 土力学, 2009,30(1): 169-174. Lian Zhilong, Zhang Jin, Wang Xiuxi, et al. Simulation study of characteristics of hydraulic fracturing propagation[J]. Rock and Soil mechanics, 2009, 30(1): 169-174.
[15] Yao Y, Gosavi S V, Searles K H, et al. Cohesive fracture mechanics based analysis to model ductile rock fracture[C]. ARMA 10-140, 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. Salt Lake City, UT, USA, June 27-30, 2010.
[16] 张广明, 刘合, 张劲, 等. 油井水力压裂流-固耦合非线性有限元数值 模拟[J]. 石油学报, 2009, 30(1): 113-116. Zhang Guangming, Liu He, Zhang Jin. et al. Simulation of hydraulic fracturing of oil well based on fluid-solid coupling equation and non-linear finite element[J]. Acta Petrolei Sinica, 2009, 30(1): 113-116.
[17] 彪仿俊, 刘合, 张士诚, 等. 水力压裂水平裂缝影响参数的数值模拟 研究[J]. 工程力学, 2011(10): 228-235. Biao Fangjun, Liu He, Zhang Shicheng, et al. Numerical simulation on hydraulic fracturing horizontal fracture affecting parameters[J]. Engineering Mechanics, 2011(10): 228-235.
[18] 朱君, 叶鹏, 王素玲, 等. 低渗透储层水力压裂三维裂缝动态扩展数 值模拟[J]. 石油学报, 2010, 31(1): 119-123. Zhu Jun, Ye Peng, Wang Suling, et al. 3D numerical simulation of fracture dynamic propagation in hydraulic fracturing of low-permeability reservoir[J]. Acta Petrolei Sinica, 2010, 31(1): 119-123.
[19] 王素玲, 姜民政, 刘合. 基于损伤力学分析的水力压裂三维裂缝形态 研究[J]. 岩土力学, 2011(7): 2205-2210. Wang Suling, Jiang Mingzheng, Liu He. Study on hydraulic fracturing three-dimensional fracture morphology based on damage mechanics analysis[J]. Rock and Soil Mechanics, 2011(7): 2205-2210.
[20] 王瀚, 刘合, 张劲, 等. 水力裂缝的缝高控制参数影响数值模拟研究[J]. 中国科学技术大学学报, 2011(9): 820-825. Wang Han, Liu He, Zhang Jin, et al. Numerical simulation on affecting parameters of fracture height control in hydraulic fracture[J]. Journal of China Science and Technology University, 2011(9): 820-825.
[21] Barree R D, Conway M W. Experimental and Numerical Modeling of Convective Proppant Transport (includes associated papers 31036 and 31068)[J]. Journal of Petroleum Technology, 1995, 47(3): 216-222.
[22] 刘合, 张广明, 张劲, 等. 油井水力压裂摩阻计算和井口压力预测[J]. 岩石力学与工程学报, 2010, 29(增1): 2833-2839. Liu He, Zhang Guangming, Zhang Jin, et al. Friction loss calculation and surface pressure prediction in oil well hydrualic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2833-2839.
[23] Willingham J D, Tan H C, Norman L R. Perforation friction pressure of fracturing fluid slurries[C]. SPE 25891, Low Permeability Reservoirs Symposium, Denver, CO, USA, April 26-28, 1993.
[24] 郭建春, 杨立君, 赵金洲, 等. 压裂过程中孔眼摩阻计算的改进模型 及应用[J]. 天然气工业, 2005, 25(5): 69-71. GUO Jianchun, Yang Lijun, Zhao Jinzhou, et al. Modified model and application of calculation perforation pressure loss during hydraulic fracturing[J]. Natural Gas Industry, 2005, 25(5): 69-71.
[25] Romero J, Mack M G, Elbel J L. Theoretical model and numerical investigation of near -wellbore effects in hydraulic fracturing[J]. SPE Production & Facilities, 2000, 15(2): 76-82.
[26] Lord D L, Shah S N, Rein J R G, et al. Study of perforation friction pressure employing a large -scale fracturing flow simulator[C]. SPE 28508, SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, September 25-28 , 1994.
[27] 张广明, 刘合, 张劲, 等. 水平井水力压裂的三维有限元数值模拟研 究[J]. 工程力学, 2011(2): 101-106. Zhang Guangming, Liu He, Zhang Jin, et al. Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture[J]. Engineering Mechanics, 2011(2): 101-106.
文章导航

/