研究论文

沥青层钻井液柱压力关键影响因素及控制技术

  • 任立伟, 夏柏如, 毛迪, 郭元恒
展开
  • 1. 中国地质大学(北京)工程技术学院, 北京 100083;
    2. 中石化石油工程技术服务有限公司, 北京 100101
任立伟,博士研究生,高级工程师,研究方向为钻井液技术与管理,电子信箱: 8267892@qq.com

收稿日期: 2013-11-15

  修回日期: 2013-12-23

  网络出版日期: 2014-02-15

基金资助

国家科技重大专项项目(2008ZX05031)

Key Influencing Factors and Control Technology of Drilling Fluid Pressure in the Bitumen Zone

  • REN Liwei,,XIA Bairu, MAO Di, GUO Yuanheng
Expand
  • 1. College of Engineering and Technology, China University of Geosciences, Beijing 100083, China;
    2. Sinopec Oilfield Service Corporation, Beijing 100101, China

Received date: 2013-11-15

  Revised date: 2013-12-23

  Online published: 2014-02-15

摘要

沥青层安全钻井问题困扰Y 油田的开发,微小的钻井液柱压力波动即可引起沥青流动侵入井内而发生复杂事故或弃井。分析表明,污染后钻井液性能恶化快、沥青易黏附固相颗粒、高温可流动性好、钻井液与沥青的置换型漏失等造成钻井液柱压力难以控制,进而造成沥青侵入速度与程度得不到有效控制。室内和现场试验表明,保持钻井液膨润土含量1%、随钻堵漏材料含量8%左右有利于钻进时钻井液柱压力控制;稠化封堵技术可减慢停止循环时的沥青侵入速度;控压钻井(MPD)技术可有效调控井筒液柱压力,以较低钻井液密度钻穿沥青层,降低沥青与钻井液置换量、侵入速度与程度到可控水平。

本文引用格式

任立伟, 夏柏如, 毛迪, 郭元恒 . 沥青层钻井液柱压力关键影响因素及控制技术[J]. 科技导报, 2014 , 32(3) : 29 -33 . DOI: 10.3981/j.issn.1000-7857.2014.03.003

Abstract

The exploration of Y oilfield seriously suffered from safety problems in the bitumen zone. Slight fluctuation of low drilling fluid pressure may trigger the mobilization and invasion of near-wellbore bitumen, which may lead to complex accidents or well abandonment. Analysis indicated that it is hard to control the drilling fluid pressure because properties of bitumen-contaminated drilling fluid quickly got worse. Bitumen has good liquidity at high temperature and adhered solid particles easily. Even worse, displacement loss of drilling fluid and bitumen accelerated invasion of bitumen. Thus, the degree and speed of bitumen invasion got out of hand. Test results in lab and field showed that, in order to control drilling fluid pressure, the contents of bentonite and plugging materials at about 1% and 8% respectively in drilling fluid are crucial while drilling. Meanwhile, invasion speed of bitumen can be reduced by thickening and plugging technology during circulation stop. The managed pressure drilling (MPD) technology can be used to effectively control wellbore drilling fluid pressure and drill through bitumen formation with lower drilling fluid density. Then the displacement amount of bitumen and drilling fluid, invasion degree and speed were reduced to a "controlable" level.

参考文献

[1] 岳前升,刘书杰,向兴金. 适于疏松砂岩稠油油藏储集层保护的水平井钻 井液[J]. 石油勘探与开发, 2010, 37(2): 232-235. Yue Qiansheng, Liu Shujie, Xiang Xingjin. Drilling fluid technology for horizontal wells to protect the formations in unconsolidated sandstone heavy oil reservoirs [J]. Petroleum Exploration and Development, 2010, 37 (2): 232-235.
[2] Weatherl M H. Encountering an unexpected tar formation in a deep water Gulf of Mexico exploration well[C]. SPE/IADC Drilling Conference, Amsterdam, The Netherlands, February 20-22, 2007.
[3] Perez G P. Compositions and methods for treatment of well bore tar: USA, US7665523B2[P]. 2010-2-23.
[4] Romo L, Shaughnessy J, Lisle E. Challenges associated with subsalt tar in the Mad Dog field[C]. SPE Annual Technical Conference and Exhibition, Anaheim, USA, November 11-14, 2007.
[5] Gang H, Keith H, Jamie R, et al. Deepwater bitumen drilling: what happened downhole?[C]. IADC/SPE Drilling Conference, Orlando, USA, March 4-6, 2008.
[6] Gang H, Keith H, Jerry O, et al. Drilling through bitumen in the Gulf of Mexico: the shallower VS the deeper[C]. Offshore Technology Conference, Houston, USA, May 5-8, 2008.
[7] Han G, Osmond J, Zambonini M. A USD 100 million "Rock": Bitumen in the deepwater gulf of Mexico[J]. SPE Drilling & Completion, 2010, 25(3): 290-299.
[8] 郭京华, 夏柏如, 赵增新, 等. F19井沥青侵及相关井下复杂情况的处理[J]. 特种油气藏, 2012, 19(4): 134-137. Guo Jinghua, Xia Bairu, Zhao Zengxin, et al. Treatments for bitumen contamination and associated downhole problems in well F19[J]. Special Oil & Gas, 2012, 19(4): 134-137.
[9] 郭京华, 夏柏如, 黄桂洪, 等. 稠油沥青污染钻井液的处理技术[J]. 钻采 工艺, 2012, 35(4): 91-94. Guo Jinghua, Xia Bairu, Huang Guihong, et al. Treatment technique for bitumen-contaminated drilling fluids[J]. Drilling & Production Technology, 2012, 35(4): 91-94.
[10] 何清水, 宋明全, 肖超, 等. 非均质超厚活跃沥青层安全钻井技术探讨[J]. 石油钻探技术, 2012, 41(1): 20-24. He Qingshui, Song Mingquan, Xiao Chao, et al. Discussion on safe drilling technology for heterogeneous, ultra-thick and active bitumen zone [J]. Petroleum Drilling Techniques, 2012, 41(1): 20-24.
[11] 刘国祥, 胡平, 巩春伟, 等. 几种国产渣油黏度的研究[J]. 石油大学学报: 自 然科学版, 1996, 20(2): 80-84. Liu Guoxiang, Hu Ping, Zhu Chunwei, et al. Determination of the viscosities of several petroleum residua[J]. Journal of the University of Petroleum, China: Edition of Natural Science , 1996, 20(2): 80-84.
[12] 周卫峰, 原健安, 戴经梁. 影响黏附性的沥青性质分析[J]. 石油沥青, 2003, 17(3): 22-25. Zhou Weifeng, Yuan Jianan, Dai Jingliang. Analysis of asphalt properties influencing adhesion[J]. Petroleum Asphalt, 2003, 17(3): 22-25.
[13] 朱迪. 沥青与集料的黏附性分析[J]. 内蒙古科技与经济, 2009, 191(13): 53-56. Zhu Di. Adhesiveness analysis between pitch and admixture[J]. Inner Mongolia Science Technology & Economy, 2009, 191(13): 53-56.
[14] 舒刚, 孟英峰, 李皋, 等. 重力置换式漏喷同存机理研究[J]. 石油钻探技术, 2011, 39(1): 6-11. Shu Gang, Meng Yingfeng, Li Ao, et al. Mechanism of mud loss and well kick due to gravity displacement[J]. Petroleum Drilling Techniques, 2011, 39 (1): 6-11.
[15] 陈栋, 李季, 黄燕山, 等. 胶质和沥青质对原油流动性影响的红外光谱研究[J]. 应用化工, 2010, 39(7): 1100-1113. Chen Dong, Li Ji, Huang Yanshan, et al. Influence of the colloid and asphaltene on fluidity of the crude oil by IR spectrum[J]. Applied Chemical Industry, 2010, 39(7): 1100-1113.
[16] 王大为, 李铁虎, 李宁利, 等. 老化沥青软化点与沥青质关系的理论研究[J]. 炭素技术, 2008, 27(3): 19-21. Wang Dawei, Li Tiehu, Li Ningli, et al. Theoretical correlation between softening point and asphaltene of aged asphalt[J]. Carbon Techniques, 2008, 27(3): 19-21.
[17] 毛迪. 控压钻井地质适应性评价技术[J]. 科技导报, 2012, 30(23): 36-41. Mao Di. Geological adaptability evaluation technology for managed pressure drilling[J]. Science & Technology review, 2012, 30(23): 36-41.
[18] 朱静, 周安娜. 沥青老化过程中温度敏感性的研究[J]. 燃料与化工, 2002, 33(1): 30-32. Zhu Jing, Zhou Anna. Study on temperature sensitivity in pitch ageing process [J]. Fuel & Chemical Processes, 2002, 33(1): 30-32.
[19] 范维玉, 杨秋水. 高锰酸钾氧化法对孤岛原油沥青质结构的研究[J]. 燃料 化学学报, 1998, 16(3): 237-244. Fan Weiyu, Yang Qiushui. Study on the structure of gudao asphaltene with alkaline permanganate oxidation[J]. Journal of Fuel Chemistry and Technology, 1998, 16(3): 237-244.
[20] 任立伟, 夏柏如, 唐文泉, 等. 伊朗稠油沥青稠化封堵技术研究与应用I:原 位氧化[J]. 科技导报, 2013, 31(23): 31-35. Ren Liwei, Xia Bairu, Tang Wenquan, et al. Technology research and apply on the bodying and sealing of bitumen in Iran I: In-situ oxidation[J]. Science & Technology Review, 2013, 31(23): 31-35.
[21] 任立伟, 夏柏如, 唐文泉, 等. 伊朗Y油田深部复杂地层钻井液技术[J]. 石 油钻探技术, 2013, 41(4): 92-96. Ren Liwei, Xia Bairu, Tang Wenquan, et al. Drilling fluid technologies for complex deep well in Iran Y oilfield [J]. Petroleum Drilling Techniques, 2013, 41(4): 92-96.
文章导航

/