专题论文

植物纤维纳米化拆解分离与高值利用

  • 吴义强 ,
  • 卿彦 ,
  • 姚春花 ,
  • 吴清林
展开
  • 1. 中南林业科技大学材料科学与工程学院, 长沙 410004;
    2. 美国路易斯安那州立大学可再生自然资源学院, 巴吞鲁日 70803
吴义强,教授,研究方向为木材科学、木材功能性改良、生物质复合材料,电子信箱:wuyq0506@126.com

收稿日期: 2013-12-16

  修回日期: 2014-01-17

  网络出版日期: 2014-04-09

基金资助

国家林业公益性行业科研专项(201404604);“十二五”国家科技支撑计划项目(2012BAD24B03)

Mechanical Defibrillation and Applications of Cellulose Nanofibril from Wood Fiber

  • WU Yiqiang ,
  • QING Yan ,
  • YAO Chunhua ,
  • WU Qinglin
Expand
  • 1. School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
    2. School of Renewable Natural Resources, Louisiana State University, Baton Rouge 70803, USA

Received date: 2013-12-16

  Revised date: 2014-01-17

  Online published: 2014-04-09

摘要

为进一步阐述机械剪切对植物纤维纳米化拆解分离的作用机制,采用超微细磨-微射流纳米均质化联合的方法制备纤维素纳米纤丝,对其微观形貌、晶体结构、分子聚合度等特性进行综合表征,并探讨了其新型功能材料的主要性能与应用前景。结果表明,微射流纳米均质化特有的剪切方式能拆解分离超微细磨产生的大径级“顽固”微纤丝束(团),提高纤维整体性能。纤维素纳米纤丝直径8~40 nm,长约数微米,在溶液中高度网状交联;保持原料纤维的晶型,结晶度降至44%,分子聚合度降低32%。其自组装薄膜力学性能好、透光性强,是新型集成电路、显示器材、光学材料的良好基材。纤维经过功能化修饰后,获得的新型功能材料质轻多孔、绿色环保、性能可裁剪设计,在污水(空气)净化处理、高效催化、智能控制等领域具有巨大的应用潜力。

本文引用格式

吴义强 , 卿彦 , 姚春花 , 吴清林 . 植物纤维纳米化拆解分离与高值利用[J]. 科技导报, 2014 , 32(4-5) : 15 -21 . DOI: 10.3981/j.issn.1000-7857.2014.h1.001

Abstract

To better understand how plant fibers mechanically defibrillate into cellulose nanofibrils, the wood pulp fiber suspension was processed by refining in combination with intense microfluidization. Cellulose nanofibril properties, including the micro-structure, crystallinity, and degree of polymerization were characterized. Several novel composite materials based on the resulting cellulose nanofibril were prepared and their potential applications were examined. The results showed that intense microfluidization further liberated microfibril bundles (aggregations) created during refining, improving the integral properties of resultant nanofibrils. Nanofibril diameters ranged from 8 to 40 nm while lengths varied over several micrometers, and they exhibited a highly tangling network. Although the original crystal structure was preserved, nanofibril crystallinity decreased to 44%, and the degree of polymerization was reduced by 32% compared to that of pulp fiber. Due to excellent mechanical properties and high light transmittance, free-standing cellulose nanofibril films are considered as promising substrates for flexible integral circuit, LED, and optical materials. Multifunctioned cellulose nanofibril aerogels are highly porous and environmentally friendly, which can be optionally tailored for use of water purification, air filtration, intelligent control and as efficient catalysts.

参考文献

[1] Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemistry Society Reviews, 2011, 40(7): 3941-3994.
[2] Herrick F W, Casebier R L, Hamilton J K, et al. Microfibrillated cellulose: Morphology and accessibility[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 37(9): 797-813.
[3] Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 37(9): 815-827.
[4] Wang Q, Zhu J Y, Gleisner R, et al. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose, 2012, 19(5): 1631-1643.
[5] Zimmermann T, Bordeanu N, Sturb E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential[J]. Carbohydrate Polymers, 2010, 79(4): 1086-1093.
[6] Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood[J]. Biomacromolecules, 2007, 8(10): 3276- 3278.
[7] Wang B, Sain M. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers[J]. Composites Science and Technology, 2007, 67(11/12): 2521-2527.
[8] Chakraborty A, Sain M, Kortschot M. Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing[J]. Holzforschung, 2005, 59(1): 102-107.
[9] Uetani K, Yano H. Nanofibrillation of wood pulp using a high-speed blender[J]. Biomacromolecules, 2011, 12(2): 348-353.
[10] Spence K L, Venditti R A, Rojas O J, et al. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods[J]. Cellulose, 2011, 18(4): 1097-1111.
[11] Microfluidics Corporation. How it works: Particle size reduction[EB/ OL].[2014-01-16].http://www.microfluidicscorp.com/index.php?option= com_content&view=article&id=49&Itemid=180. 2012.
[12] Iwamoto S, Nakagaito A N, Yano H. Nanofibrillation of pulp fibers for the processing of transparent nanocomposites[J]. Applied Physics A: Materials Science & Processing, 2007, 89(2): 461-466.
[13] Stelte W, Sanadi A R. Preparation and characterization of cellulose nanofibers from two commercial hard wood and softwood pulps[J]. Industrial & Engineering Chemistry Research, 2009, 48(24): 11211- 11219.
[14] Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1): 71-85.
[15] Tejado A, Alam M N, Antal M, et al. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers[J]. Cellulose, 2012, 19(3): 831-842.
[16] Liimatainen H, Visanko M, Sirviö J A, et al. Enhancement of nanofibrillation of wood cellulose through sequential periodatechlorite oxidation[J]. Biomacromolecules, 2012, 13(5): 1592-1597.
[17] Liimatainen H, Visanko M, Sirviö J A, et al. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pretreatment[J]. Cellulose, 2013, 20(2): 741-749.
[18] Pääkkö M, Ankerfors M, Kosonen H, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules, 2007, 8(6): 1934-1941.
[19] Qing Y, Sabo R, Zhu J Y, et al. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches[J]. Carbohydrate Polymers, 2013, 97(1): 226-234.
[20] Lavoine N, Desloges I, Dufresne A. Microfibrillated cellulose: Its barrier properties and applications in cellulosic materials: A review[J]. Carbohydrate Polymers, 2012, 90(2): 735-764.
[21] Alexander W J, Goldschmid Otto, Mitchell R L. Relation of intrinsic viscosity of cellulose chain length- degree of polymerization range below 400[J]. Industrial and Engineering Chemistry, 1957, 49(8): 1303-1306.
[22] Segal L, Creely J J, Martin Jr A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the Xray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
[23] Nogi M, Iwamoto S, Nakagaito A N, et al. Optically transparent nanofiber paper[J]. Advanced Materials, 2009, 21(16): 1595-1598.
[24] Okahisa Y, Yoshida A, Miyaguchi S, et al. Optically transparent woodcellulose nanocomposite as a base substrate for flexible organic lightemitting diode displays[J]. Composites Science and Technology, 2009, 69(11/12): 1958-1961.
[25] Hu L, Zheng G, Yao J, et al. Transparent and conductive paper from nanocellulose fibers[J]. Energy and Environmental Science, 2013, 6 (2): 513-518.
[26] Aulin C, Gällstedt M, Lindström T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings[J]. Cellulose, 2010, 17 (3): 559-574.
[27] Sabo R, Seo J H, Ma Z. Cellulose nanofiber composite substrates for flexible electronics[C]//International Conference on Nanotechnology for Renewable Materials 2012, Quebec, Canada: TAPPI, 2012.
[28] 卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报, 2013, 31(15): 17-22. Lu Yun, Sun Qingfeng, Li Jian. Preparation and characterization of nanofiber films and foams based on ultrasonic nanofibrillated cellulose from wood[J]. Science & Technology Review, 2013, 31(15): 17-22.
[29] Savagan A J, Jensen P, Dvinskikh S V, et al. Towards tailored hierarchical structures in cellulose nanocomposite biofoams prepared by freezing/freeze-drying[J]. Journal of Materials Chemistry, 2010, 20 (32): 6646-6654.
[30] Olsson R T, Azizi Samir M A S, Salazar-Alvarez G, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nature Nanotechnology, 2010, 5 (8): 584-588.
文章导航

/