专题论文

高压匀质处理对纳米纤维素自聚集特性及气凝胶结构的影响

  • 李勍 ,
  • 陈文帅 ,
  • 卢天鸿 ,
  • 高佳丽 ,
  • 嵩珊 ,
  • 于海鹏 ,
  • 刘一星
展开
  • 东北林业大学材料科学与工程学院, 生物质材料科学与技术教育部重点实验室, 哈尔滨 150040
李勍,博士研究生,研究方向为纳米纤维素,电子信箱:liqing007007@126.com

收稿日期: 2013-12-22

  修回日期: 2014-01-26

  网络出版日期: 2014-04-09

基金资助

中央高校基本科研业务费专项(DL12DB01);教育部新世纪优秀人才支持计划项目(NCET-10-0313)

Influence of High Pressure Homogenization on Self-aggregation and Formation of Aerogel Structure from Nanocellulose

  • LI Qing ,
  • CHEN Wenshuai ,
  • LU Tianhong ,
  • GAO Jiali ,
  • SONG Shan ,
  • YU Haipeng ,
  • LIU Yixing
Expand
  • Key Laboratory of Bio-based Material Science and Technology of Ministry of Education; Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China

Received date: 2013-12-22

  Revised date: 2014-01-26

  Online published: 2014-04-09

摘要

木材细胞壁的重要组成部分是许多直径在纳米尺度、具有高长径比、高比表面积和丰富表面基团的纤维素分子聚集体。基于“自下而上”的思想,利用层层分离法从木粉中分离出纳米尺度的基元纤丝。首先,通过化学和超声预处理并结合高压匀质处理的方法从木材中分离制备出纳米纤维素(CNF);然后,通过冷冻干燥的方法将CNF 进一步组装加工成纳米纤维素气凝胶。研究发现,超声结合匀质的方法,可得到均匀纤丝化的CNF,具有低直径尺寸分布(纤丝直径为1~3 nm)和高长径比特征,但氢键作用的影响使得单根纤丝又易重构为簇、带状的聚集体形式。随着CNF 溶液浓度的增大,所形成的气凝胶密度增大,孔隙度降低,结构由以纤维为主,转变为纤丝交织的片层结构。本研究所得的气凝胶可广泛应用于包装、生物医药、吸附材料等领域。

本文引用格式

李勍 , 陈文帅 , 卢天鸿 , 高佳丽 , 嵩珊 , 于海鹏 , 刘一星 . 高压匀质处理对纳米纤维素自聚集特性及气凝胶结构的影响[J]. 科技导报, 2014 , 32(4-5) : 51 -55 . DOI: 10.3981/j.issn.1000-7857.2014.h1.007

Abstract

Cellulose molecule aggregates are an important component of the cell wall of timber. They have diameters at the nanometer scale, high aspect ratio, high specific surface area and rich surface groups. This article is based on "bottom-up" academic thought, and layer-by-layer separation of the wood powder is used to prepare microfibril. By chemical pretreatment, high-intensity ultrasound treatment and high-pressure homogenization treatment, cellulose nanofiber (CNF) was isolated from the cell walls of wood cellulose, and CNF was further assembled into aerogels by freeze-drying method. The results show that by combining high-intensity ultrasonication and high-pressure homogenization, uniform CNF with diameters within 1 and 3 nm and their bundles and stripes can be obtained. The aerogels possess a network structure formed by nanofibers or their interwoven sheets.

参考文献

[1] Sehaqui H. Nanofiber networks, aerogels and biocomposites based on nanofibrillated cellulose from wood[D]. Stockholm: Royal Institute of Technology, 2011.
[2] Chen W S, Yu H P, Li Q, et al. Ultralight and highly flexible aerogels with long cellulose I nanofibers[J]. Soft Matter, 2011b, 7(21): 10360- 10368.
[3] Kistler S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127: 741.
[4] Pääkkö M, Vapaavuori J, Silvennoinen R, et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities[J]. Soft Matter, 2008, 4(12): 2492- 2499.
[5] Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 37: 815-827.
[6] Herrick F W, Casebier R L, Hamilton J K, et al. Microfibrillated cellulose: Morphology and accessibility[J]. Journal of Applied Polymer Science: Applied Polymer Symposium, 1983, 37: 797-813.
[7] Eichhorn S, Dufresne A, Aranguren M, et al. Review: Current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1): 1-33.
[8] Siró I, Plackett D. Microfibrillated cellulose and new nanocomposite materials: A review[J]. Cellulose, 2010, 17(3): 459-494.
[9] Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50(24): 2-31.
[10] 叶代勇. 纳米纤维素的制备[J]. 化学进展, 2007, 19(10): 1568-1574. Ye Daiyong. Preparation of nanocellulose[J]. Progress in Chemistry, 2007, 19(10): 1568-1574.
[11] 李勍, 陈文帅, 于海鹏, 等. 纤维素纳米纤维增强聚合物复合材料研 究进展[J]. 林业科学, 2013, 49(8): 126-131. Li Qing, Chen Wenshuai, Yu Haipeng, et al. Cellulose nanofiber reinforced polymer nanocomposites: A short review[J]. Scientia Silvae Sinicae, 2013, 49(8): 126-131.
[12] Samir M A S A, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field[J]. Biomacromolecules, 2005, 6(2): 612-626.
[13] Iwamoto S, Abe K Yano H. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber Network Characteristics[J]. Biomacromolecules, 2008, 9(3): 1022-1026.
[14] Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(2): 3941-3994.
[15] Chen W S, Yu H P, Liu Y X. Preparation of millimeter-long cellulose I nanofibers with diameters of 30-80 nm from bamboo fibers[J]. Carbohydrate Polymers, 2011, 86(2): 453-461.
[16] Chen W S, Yu H P, Liu Y X, et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemicalultrasonic process[J]. Cellulose, 2011a, 18(2): 433-442.
[17] Chen W S, Yu H P, Liu Y X, et al. Individualization of cellulose nanofibers from wood using high- intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers, 2011b, 83(4): 1804-1811.
[18] 陈文帅, 于海鹏, 刘一星, 等. 木质纤维素纳米纤丝制备及形态特征 分析[J]. 高分子学报, 2010, 1(11): 1320-1326. Chen Wenshuai, Yu Haipeng, Liu Yixing, et al. A method for isolating cellulose nanofibrils from wood and their morphological characteristics[J]. Acta Polymerica Sinica, 2010, 1(11): 1320-1326.
文章导航

/