专题论文

新型木质纤维素气凝胶的制备、表征及疏水吸油性能

  • 万才超 ,
  • 卢芸 ,
  • 孙庆丰 ,
  • 李坚
展开
  • 1. 东北林业大学材料科学与工程学院, 哈尔滨 150040;
    2. 东北林业大学生物质材料科学与技术教育部重点实验室, 哈尔滨 150040
万才超,博士研究生,研究方向为木材功能性改良及生物质基复合材料,电子信箱:wancaichaojy@163.com

收稿日期: 2013-12-16

  修回日期: 2014-01-10

  网络出版日期: 2014-04-09

基金资助

国家自然科学基金面上项目(31270590);中国博士后科学基金(2013M540263);《科技导报》“博士生创新研究资助计划”项目(kjdb2012006)

Preparation and Characterization of Novel Lignocellulose Aerogel with Hydrophobicity and Oil Absorption Properties

  • WAN Caichao ,
  • LU Yun ,
  • SUN Qingfeng ,
  • LI Jian
Expand
  • 1. Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China;
    2. Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China

Received date: 2013-12-16

  Revised date: 2014-01-10

  Online published: 2014-04-09

摘要

为制备一种新型的木质纤维素气凝胶,采用化学预处理、溶解再生与冷冻干燥相结合的方法,对废弃的麦秸杆进行提纯、溶解、置换和干燥,并采用绿色、无毒、低廉的氢氧化钠/聚乙二醇溶液作为纤维素溶剂。采用扫描电镜(SEM)、BET 比表面积分析、X 射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和热重分析仪(TGA),对制备的新型木质纤维素气凝胶的微观形貌、比表面积与孔径分布、晶型结构、化学结构及热稳定性进行表征。结果表明,制备的新型木质纤维素气凝胶具有连续、层叠的三维网状结构,比表面积为99.17 m2/g,总孔容为0.45 cm3/g;纤维素气凝胶的晶型由纤维素I 型转变为纤维素Ⅱ 型,结晶度为72.3%,相对于原料提高了23.4%,热稳定性也略微升高;并利用三甲基氯硅烷(TMCS)进行疏水改性,制备出了具有疏水性能的纤维素气凝胶。提供了一种新的制备木质纤维素气凝胶的有效溶剂,且具有高吸附性能、高承重能力、高结晶度的纤维素气凝胶是一种具有较大应用潜力的新型功能材料。

本文引用格式

万才超 , 卢芸 , 孙庆丰 , 李坚 . 新型木质纤维素气凝胶的制备、表征及疏水吸油性能[J]. 科技导报, 2014 , 32(4-5) : 79 -85 . DOI: 10.3981/j.issn.1000-7857.2014.h1.013

Abstract

To obtain novel lignocellulose aerogels, the raw material, namely waste wheat straw, was purified, dissolved, replaced and dried in sequence via corresponding chemical pretreatment, dissolution and regeneration as well as freeze drying. Furthermore, a green, non-toxic and inexpensive NaOH/PEG aqueous solution was chosen to dissolve cellulose. The morphological feature, pore size distribution, crystal form, chemical construction and thermostability of the novel lignocellulose aerogel were analyzed using scanning electron microscopy (SEM), BET measurement, X- ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The results show that the obtained novel lignocellulose aerogel has a continuous and tiered threedimensional network structure. Moreover, its specific surface area reaches 99.17 m2/g, and total pore volume reaches 0.45 cm2/g. The crystal form of the novel lignocellulose aerogel is transformed from the cellulose I crystalline structure to cellulose Ⅱ crystalline structure, and the crystallinity reaches 72.3%, increasing by 23.4% as compared with that of the raw material straw. Meanwhile, the thermostability is slightly improved. Moreover, trimethylchlorosilane (TMCS) was used to hydrophobically modify the lignocellulose aerogel. In this article, a new and effective solvent for preparing lignocellulose aerogels is offered, and the novel lignocellulose aerogel having superior adsorptive properties, excellent weight capacity and high crystallinity has great application potentials as a new-style functional material.

参考文献

[1] 毕于运. 秸秆资源评价与利用研究[D]. 北京: 中国农业科学院, 2010. Bi Yuyun. Study on straw resources evaluation and utilization in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.
[2] Browne R, Saxena I. Cellulose: Molecular and structural biology: Selected articles on the synthesis, structure and applications of cellulsoe[M]. Dordrecht: Springer, 2007.
[3] Schaefer D W, Keefer K D. Structure of random porous materials: Silica aerogel[J]. Physical Review Letters, 1986, 56: 2199-2202.
[4] Lee J K, Gould G L. Polydicyclopentadiene based aerogel: A new insulation material[J]. Journal of Sol-Gel Science and Technology, 2007, 44(1): 29-40.
[5] Biesmans G, Randall D, Francais E, et al. Polyurethane-based organic aerogels' thermal performance[J]. Journal of Non-crystalline Solids, 1998, 225: 36-40.
[6] Tamon H, Ishizaka H, Mikami M, et al. Porous structure of organic and carbon aerogels synthesized by sol- gel polycondensation of resorcinol with formaldehyde[J]. Carbon, 1997, 35(6): 791-796.
[7] Gronauer M, Fricke J. Acoustic properties of microporous SiO2-aerogel[J]. Acta Acustica United with Acustica, 1986, 59(3): 177-181.
[8] Hrubesh L W, Pekala R W. Thermal properties of organic and inorganic aerogels[J]. Journal of Materials Research, 1994, 9(3): 731-738.
[9] Fischer F, Rigacci A, Pirard R, et al. Cellulose- based aerogels[J]. Polymer, 2006, 47(22): 7636-7645.
[10] Ding B, Cai J, Huang J, et al. Facile preparation of robust and biocompatible chitin aerogels[J]. Journal of Materials Chemistry, 2012, 22(12): 5801-5809.
[11] Pinkert A, Marsh K N, Pang S, et al. Ionic liquids and their interaction with cellulose[J]. Chemical Reviews, 2009, 109(12): 6712-6728.
[12] Schwertfeger F, Zimmermann A, Krempel H. Use of inorganic aerogels in pharmacy: USA, 6280744B1[P]. 2001-08-28.
[13] Korhonen J T, Kettunen M, Ras R H, et al. Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 1813-1816.
[14] Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose[J]. Journal of Molecular Liquids, 2010, 156(1): 76-81.
[15] Cuculo J, Smith C, Sangwatanaroj U, et al. A study on the mechanism of dissolution of the cellulose/NH3/NH4SCN system. I[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(2): 229-239.
[16] Hattori M, Koga T, Shimaya Y, et al. Aqueous calcium thiocyanate solution as a cellulose solvent. Structure and interactions with cellulose[J]. Polymer Journal, 1998, 30(1): 43-48.
[17] Frey M W, Li L, Xiao M, et al. Dissolution of cellulose in ethylene diamine/salt solvent systems[J]. Cellulose, 2006, 13(2): 147-155.
[18] Matsumoto T, Tatsumi D, Tamai N, et al. Solution properties of celluloses from different biological origins in LiCl· DMAc[J]. Cellulose, 2001, 8(4): 275-282.
[19] Johnson D C, Nicholson M D, Haigh F C. Dimethyl sulfoxide/ paraformaldehyde: A nondegrading solvent for cellulose[J]. 1975.
[20] Yan L, Gao Z. Dissolving of cellulose in PEG/NaOH aqueous solution[J]. Cellulose, 2008, 15(6): 789-796.
[21] Zhang S, Li F X, Yu J Y. Structure and properties of novel cellulose fibres produced from NaOH/PEG- treated cotton linters[J]. Iranian Polymer Journal, 2010, 19(12): 949-957.
[22] 卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报, 2013, 31(15): 17-22. Lu Yun, Sun Qingfeng, Li Jian. Preparation and characterization of nanofiber films and foams based on ultrasonic nanofibrillated cellulose from wood[J]. Science & Technology Review, 2013, 31(15): 17-22.
[23] Schwertfeger F, Frank D, Schmidt M. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying[J]. Journal of Non-crystalline Solids, 1998, 225: 24-29.
[24] Shi F, Wang L, Liu J. Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process[J]. Materials Letters, 2006, 60(29/30): 3718-3722.
[25] Weimer P, Hackney J, French A. Effects of chemical treatments and heating on the crystallinity of celluloses and their implications for evaluating the effect of crystallinity on cellulose biodegradation[J]. Biotechnology and Bioengineering, 1995, 48(2): 169-178.
[26] Mellor J D. Fundamentals of freeze-drying[M]. London: Academic Press Inc., 1978.
[27] Inoue T, Osatake H. A new drying method of biological specimens for scanning electron microscopy: The t-butyl alcohol freeze-drying method[J]. Archives of Histology and Cytology, 1988, 51(1): 53-59.
[28] Hu X, Hu K, Zeng L, et al. Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study[J]. Carbohydrate Polymers, 2010, 82(1): 62-68.
[29] Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12): 1781-1788.
[30] Li J, Lu Y, Yang D, et al. Lignocellulose aerogel from wood-ionic liquid solution (1- allyl- 3- methylimidazolium chloride) under freezing and thawing conditions[J]. Biomacromolecules, 2011, 12(5): 1860-1867.
[31] Ren J, Sun R, Liu C, et al. Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst[J]. Carbohydrate Polymers, 2007, 70(4): 406-414.
[32] Rodrigues Filho G, Monteiro DS, Meireles CdS, et al. Synthesis and characterization of cellulose acetate produced from recycled newspaper[J]. Carbohydrate Polymers, 2008, 73(1): 74-82.
[33] Tejado A, Pena C, Labidi J, et al. Physico-chemical characterization of lignins from different sources for use in phenol – formaldehyde resin synthesis[J]. Bioresource Technology, 2007, 98(8): 1655-1663.
文章导航

/