将凹坑型结构优化变形应用于内燃机活塞-缸套摩擦副中,研究了仿生孔型活塞的热-结构耦合特性。以XL-2V 型发动机活塞为试验母体,根据标准活塞的受力分布,运用正交试验法建立了9 种仿生孔型活塞试验模型,应用传热分析第3 类边界条件和最大侧压力,对其进行了热-结构耦合有限元分析。结果表明,9 种仿生孔型活塞模型的裙部最大变形(Dmax)和裙部径向变形范围(Ux max-Ux min)均小于标准活塞,其中综合性能最优的1#仿生活塞裙部的仿生孔为凹坑型,孔径相对最小(d1~d4分别为1、1.5、2、2.5 mm),且均匀分布(间距1.2°);小孔径、均匀分布的凹坑型仿生孔使活塞表面润滑油膜更均匀,同时使裙部应力卸载,从而可以有效地减少摩擦磨损,降低机械损耗,提高刚度,延长使用寿命。
In this paper, the pit non-smooth structure is used in the piston-liner system of internal combustion engines, because it has relatively little friction and wear. Pits and pores are machined on the piston skirt surface, reducing the friction and wear of the piston-liner system. In this way, the working life of the system is extended. Taking XL-2V type engine for example, the stress distribution is analyzed when the standard piston motions. Using the orthogonal experiment method, this paper has established nine types of bionic pass piston test models. Thermal-structural coupling finite-element analysis of bionic and standard pistons was carried out using the third class boundary conditions in heat transfer analysis and maximum lateral pressure. The maximum deformation and radial deformation range of piston skirts were obtained. The former affected the skirt oil film thickness and the latter affected the oil film distribution uniformity degree. Finally, the first type of bionic piston was selected, which has better performance on friction reduction and wear-resistance compared with standard pistons. The results show that the uniformly distributed pit-styled bionic pores with relatively small diameters in pistons could increase the uniformity of oil films on the surface of the piston, and at the same time reduce the stress around the skirt, thus reducing the friction and wear, reducing mechanical losses, improving stiffness, and extending the working life of pistons.
[1] Richardson D E, Borman G L. Using fiber optics and laser fluorescence for measuring thin oil film with application to engines[C]// SAE Technical Paper Series. Detroit: Society of Automotive Engineers, 1991: 25-32.
[2] Inagaki H, Saito A, Murakami M, et al. Measurement of oil film thickness distribution on piston surface using fluorescence method[J]. JSME International Journal, Series B: Fluids and Thermal Engineering, 1997(3): 487-493.
[3] Zhu D, Cheng H S, Arai T, et al. A numerical analysis of piston skirt in mixed lubrication, part I: basic modeling[J]. ASME Journal of Tribology, 1992(11): 53-62.
[4] 谢友柏. 摩擦学设计主要是摩擦系统的设计[J]. 中国机械工程, 1999 (9): 16-21. Xie Youbo. Tribology design is mainly as tribo-systems design[J]. China Mechanical Engineering, 1999(9): 16-21.
[5] 杨俊伟, 于旭东, 王成焘, 等. 活塞裙部润滑油膜厚度的计算及试验研 究[J]. 内燃机学报, 2001(5): 485-488. Yang Junwei, Yu Xudong, Wang Chengtao, et al. Research on the oil film thickness on piston skirt by simulation and experiment[J]. Transactions of Csice, 2001(5): 485-488.
[6] Herbst L, Lindner H, Heglin M, et al. Targeting diesel engine efficiency[J]. Industrial Laser Solutions, 2004(19): 32-35.
[7] 裴荣薛. 非光滑活塞-缸套摩擦副贮油润滑与摩擦生热模拟[D]. 长春: 吉林大学机械科学与工程学院, 2008. Pei Rongxue. The simulation of oil storage lubrication and friction heating of non-smooth piston-cylinder friction pair[D]. Changchun: School of Machinery Science and Engineering, Jilin University, 2008.
[8] 邓宝清. 内燃机活塞缸套系统非光滑效应的仿生研究[D]. 长春: 吉林 大学生物与农业工程学院, 2004. Deng Baoqing. Bionic study of non-smooth effect on engine pistoncylinder system[D]. Changchun: School of Biological and Agricultural Engineering, Jilin University, 2004.
[9] Cong Q, Jin J F, Zhang H T, et al. Experiment research on friction and wear of bionics non-smooth structure[J]. Lubrication Engineering, 2006 (3): 22-24.
[10] Cong Q, Jin J F, Zhang H T, et al. Friction performance of bionic nonsmooth surfaces with mixing lubrication[J]. Journal of Jilin University: Engineering and Technology Edition, 2006(3): 63-66.
[11] 杨洪秀. 活塞缸套系统仿生非光滑界面摩擦与润滑机理的研究[D]. 长春: 吉林大学, 2008. Yang Hongxiu. Study on friction and lubrication mechanism of bionic non-smooth interface in piston-linear system[D]. Changchun: Jilin University, 2008.
[12] 唐华. 微孔润滑式内燃机活塞: 中国, ZL200520072962.4[P]. 2005-06-20. Tang Hua. Microporous lubrication piston of internal combustion engine: China, ZL200520072962.4[P]. 2005-06-20.
[13] 任露泉. 试验设计及其优化[M]. 第2版. 北京: 科学出版社, 2009. Ren Luquan. Optimum design of experiments[M]. 2nd ed. Beijing: Science Press, 2009.
[14] 闫振. 活塞裙部仿生孔形结构优化设计及有限元分析[D]. 长春: 吉林 大学, 2011. Yan Zhen. The bionic hole structure optimization design of piston skirt and finite element analysis[D]. Changchun: Jilin University, 2011.
[15] Kiss E. Dirichlet integral principle for elliptic type quasilinear PDEs of irreversible heat conduction process with minimum principles for first, second and third type boundary conditions[C]//22nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. Russia: Moscow, 2003: 356-378.
[16] Liu J, Garrett S. Relationship between nusselt number and the thermoviscous (Rott) functions[J]. Journal of the Acoustical Society of America, 2006, 119: 1457-1462.
[17] 元成浩, 赵元姬. CA488型发动机活塞温度场及热应力的有限元计算 分析[J]. 汽车技术, 1996(6): 12-19. Yuan Chenghao, Zhao Yuanji. CA488 engine piston temperature field and thermal stress analysis of the finite element calculation[J]. Automobile Technology, 1996(6): 12-19.
[18] 周宁. ANSYS 机械工程应用实例[M]. 北京: 中国水利水电出版社, 2006. Zhou Ning. Ansys mechanical engineering application examples[M]. Beijing: China Water Power Press, 2006.
[19] Fu W S, Lian S H, Hao L Y. An investigation of heat transfer of a reciprocating piston[J]. International Journal of Heat and Mass Transfer, 2006(3): 360-371.
[20] 于晓璐. 465汽油机仿生活塞的有限元分析[D]. 长春: 吉林大学, 2007. Yu Xiaolu. Finite element analysis of the bionic piston on the 465 gasoline engine[D]. Changchun: Jilin University, 2007.
[21] 韩晓静. 延长发动机使用寿命的活塞: 中国, ZL00237433.1[P]. 2001-06-14. Han Xiaojing. The piston can prolong life of engine: China, ZL00237433.1[P]. 2001-06-14.