专题论文

水蒸气活化液化木基活性碳纤维孔隙结构表征

  • 金枝 ,
  • 赵广杰
展开
  • 北京林业大学材料科学与技术学院, 北京100083
金枝,博士研究生,研究方向为液化木活性碳纤维,电子信箱:lucy870828@163.com

收稿日期: 2013-12-13

  修回日期: 2014-02-19

  网络出版日期: 2014-04-10

基金资助

国家林业公益性行业科研专项(201004057)

Pore Structural Characterization of Liquefied Wood-based Activated Carbon Fiber by Water Steam Activation

  • JIN Zhi ,
  • ZHAO Guangjie
Expand
  • College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China

Received date: 2013-12-13

  Revised date: 2014-02-19

  Online published: 2014-04-10

摘要

研究了不同活化温度、不同活化时间下,水蒸气活化液化木基活性碳纤维的孔隙结构特性。-196℃氮气吸附脱附等温线用于检测孔隙结构。结果表明,随着活化温度或活化时间的增加,比表面积和烧失率增加,且在较高活化温度时增加率更高。随着活化时间延长,活化温度为750~800℃时总孔容和微孔孔容增加明显,中孔孔容在650~700℃活化初期和750~800℃活化后期均有所发展。各活化温度下,随着活化时间的延长,在微孔范围内孔径分布均有所扩大且趋向多样化。

本文引用格式

金枝 , 赵广杰 . 水蒸气活化液化木基活性碳纤维孔隙结构表征[J]. 科技导报, 2014 , 32(9) : 26 -30 . DOI: 10.3981/j.issn.1000-7857.2014.09.003

Abstract

The pore structural characteristics of the liquefied wood-based activated carbon fiber with water steam activations at different activation temperatures and activation times are studied. The pore structure is assessed by N2 adsorption/desorption isotherms at -196℃. The specific surface area and the burnt-off are increased with the increase of the activation temperature or the activation time, and are more dependent on the activation time when activated at higher temperatures. With increasing activation time, the total pore volume and micropore volume are increased more significantly when activated at 750℃ and 800℃, while the mesopore volume is high at the early stage of activations at 650℃ and 700℃ then is decreased, and does not develop until the later stage of activations at 750℃ and 800℃. The pore size distribution analysis indicates that the micropore size distribution becomes increasingly heterogeneous with increasing the activation time under all activation temperatures.

参考文献

[1] Naik J R, Bikshapathi M, Singh R K, et al. Preparation, surface functionalization, and characterization of carbon micro fibers for adsorption applications[J]. Environmental Engineering Science, 2011, 28(10): 725-733.
[2] Uraki Y, Nakatani A, Kubo S, et al. Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin[J]. Journal of Wood Science, 2001, 47(6): 465-469.
[3] Uraki Y, Kubo S, Kurakami H, et al. Activated carbon fibers from acetic acid lignin[J]. Holzforschung. 1997, 51(2): 188-192.
[4] Qiao W M, Huda M, Song Y, et al. Carbon fibers and films based on biomass resins[J]. Energy and Fuels, 2005, 19(6): 2576-2582.
[5] Liu W, Zhao G. Effect of temperature and time on microstructure and surface functional groups of activated carbon fibers prepared from liquefied wood[J]. Bioresources, 2012, 7(4): 5552-5567.
[6] Xie J C, Wang X H, Deng J Y. Modifying the pore structure of pit- ACF with the chemical vapor deposition of methane and propylene[J]. Microporous and Mesoporous Materials, 2004, 76(1-3): 167-175.
[7] Ozaki J, Endo N, Ohizumi W, et al. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend[J]. Carbon, 1997, 35(7): 1031-1033.
[8] Xu B, Wu F, Chen R J, et al. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte[J]. Journal of Power Sources, 2010, 195(7): 2118-2124.
[9] Kumar K, Kothari R, Bohra J N. Effect of reactive atmosphere and maximum heat treatment temperature on char characteristics of pyrolyzed rayon cloth[J]. Carbon, 1997, 35(5): 703-706.
[10] Yang M C, Yu D G. Influence of activation temperature on the properties of polyacrylonitrile-based activated carbon hollow fiber[J]. Journal of Applied Polymer Science, 1998, 68(8): 1331-1336.
[11] Su C I, Zeng Z L, Peng C C, et al. Effect of temperature and activators on the characteristics of activated carbon fibers prepared from viscose-rayon knitted fabrics[J]. Fibers and Polymers, 2012, 13 (1): 21-27.
[12] Ma X J, Zhao G J, Liu X Y, et al. Effects of carbonization temperatures on the adsorption properties and pore structure of carbon fibers from liquefied wood[J]. Functional Materials, 2011, 42 (10): 1746-1749.
文章导航

/