研究论文

社交网络用户的社交关系和签到行为分析

  • 梁霄 ,
  • 赵吉昌 ,
  • 许可
展开
  • 北京航空航天大学软件开发环境国家重点实验室, 北京 100191
梁霄,博士研究生,研究方向为人类动力学,电子信箱:liangxiao@nlsde.buaa.edu.cn

收稿日期: 2014-03-05

  修回日期: 2014-03-11

  网络出版日期: 2014-04-26

基金资助

高等学校博士学科点专项科研基金项目(20111102110019);北航博士研究生创新基金项目(YWF-12-RBYJ-036)

Analysis of Social Ties and Checkins in Location-based Social Networks

  • LIANG Xiao ,
  • ZHAO Jichang ,
  • XU Ke
Expand
  • State Key Laboratary of Software Development Environment, Beihang University, Beijing 100191, China

Received date: 2014-03-05

  Revised date: 2014-03-11

  Online published: 2014-04-26

摘要

理解社交关系和移动行为的相关性,对于研究社交网络演化及建模人类移动是非常重要的。分析了两个基于位置社交网络网站用户的社交关系和签到行为,以量化社交关系与移动性的相关性。结果表明,社交或签到排名的概率分布反比于其排名,这意味着社交关系和移动性间存在着隐含的联系。通过对不同粒度下用户社交关系和签到行为的比较,以及用户皮尔逊相关系数的计算,证明社交关系和人类移动性存在较强的相关性。

本文引用格式

梁霄 , 赵吉昌 , 许可 . 社交网络用户的社交关系和签到行为分析[J]. 科技导报, 2014 , 32(11) : 43 -48 . DOI: 10.3981/j.issn.1000-7857.2014.11.006

Abstract

Understanding the relationship between friendship and mobility is crucial to studying the evolution of social networks and modeling human movements. This paper aims to quantify the correlation between social ties and checkins by investigating two location-based social networking websites. It is discovered that the probability of social or checkin’s rank is inversely proportional to the corresponding rank, which implies the potential connection between friendship and mobility. Therefore, the fractions of friends and checkins in the same county at different scales are compared and the Pearson correlation coefficients of users are computed. These results all demonstrate that social friendship correlates closely with human movements.

参考文献

[1] Milgram S. The small world problem[J]. Psychology Today, 1967, 1(1): 60-67.
[2] Dodds P S, Muhamad R, Watts D J. An experimental study of search in global socialnetworks[J]. Science, 2003, 301(5634): 827-829.
[3] Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393(6684): 440-442.
[4] Leskovec J, Horvitz E. Planetary-scale views on a large instant-messaging network[C]//Proceeding of the 17th International Conference on World Wide Web. NewYork: ACM Press, 2008: 915-924.
[5] Backstrom L, Boldi P, Rosa M, et al. Four degrees of separation[C]// Proceedings of the 3rd Annual ACM Web Science Conference. New York: ACM Press, 2012: 33-42.
[6] Kleinberg J. Navigation in a small world[J]. Nature, 2000, 406(6798): 845.
[7] Liben-Nowell D, Novak J, Kumar R, et al. Geographic routing in social networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33): 11623-11628.
[8] Backstrom L, Sun E, Marlow C. Find me if you can: Improving geographical predictionwith social and spatial proximity[C]//Proceedings of the 19th International Conference on World Wide Web. Raleigh: ACM Press, 2010: 61-70.
[9] Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel[J]. Nature, 2006, 439(7075): 462-465.
[10] González M, Hidalgo C, Barabási A-L. Understanding individual human mobility patterns[J]. Nature, 2008, 453(7196): 779-782.
[11] Kang C, Ma X, Tong D, et al. Intra-urban human mobility patterns: An urban morphology perspective[J]. Physica A, 2012, 391(4): 1702-1717.
[12] Bazzani A, Giorgini B, Rambaldi S, et al. Statistical laws in urban mobility from microscopic GPS data in the area of Florence[J]. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010(5): P05001.
[13] Liang X, Zheng X, Lü W, et al. The scaling of human mobility by taxis is exponential[J]. Physica A, 2012, 391(5): 2135-2144.
[14] Roth C, Kang S M, Batty M, et al. Structure of urban movements: Polycentric activityand entangled hierarchical flows[J]. PLOS ONE, 2011, 6(1): e15923.
[15] Song C, Koren T, Wang P, et al. Modellingthe scaling properties of human mobility[J]. Nature Physics, 2010, 6(10): 818-823.
[16] Han X, Hao Q, Wang B, et al. Origin of the scaling law in human mobility: Hierarchy of traffic systems[J]. Physical Review E, 2011, 83 (3):2-6.
[17] Hu Y, Zhang J, Huan D. Toward a general understanding of the scaling laws in human and animal mobility[J]. Europhysics Letters, 2011, 96 (3): 38006.
[18] Jia T, Jiang B, Carling K, et al. An empirical study on human mobility and its agent- based modeling[J]. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012(11): P11024.
[19] Yan X Y, Han X P, Wang B H, et al. Diversity of individual mobility patterns andemergence of aggregated scaling laws[J]. Scientific Reports, 2013, 3: 2678.
[20] Barthélemy M. Spatial networks[J]. Physics Reports, 2011, 499(1-3): 1- 101.
[21] Simini F, González M C, Maritan A, et al. A universal model for mobility and migrationpatterns[J]. Nature, 2012, 484(7392): 96-100.
[22] Liang X, Zhao J, Dong L, et al. Unraveling the origin of exponential law in intra- urbanhuman mobility[J]. Scientific Reports, 2013, 3: 2983.
[23] Yan X Y, Zhao C, Fan Y, et al. Universal predictability of mobility patterns in cities[J]. Physics and Society, arXiv:1307.7502v1: 1-19.
[24] Crandall D J, Backstrom L, Cosley D, et al. Inferring social ties from geographic coincidences[J]. Proceedings of the National Academy of Sciences of the Uniited States of America, 2010, 107(52): 22436- 22441.
[25] Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and onlinesocial networks[C]//Proceedings of the 12th ACM International Conference on Ubiquitous Computing. Copenhagen: ACM Press, 2010: 119-128.
[26] Cho E, Myers S, Leskovec J. Friendship and mobility: User movement in location- based social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego: ACM Press, 2011: 1082-1090.
[27] Sadilek A, Kautz H, Bigham J P. Finding your friends and following them to where youare[C]//Proceedings of the fifth ACM International Conference on Web Search and Data Mining. Seattle: ACM Press, 2012: 723-732.
[28] Cheng Z, Caverlee J, Lee K. Exploring millions of footprints in location sharing services[C]//Proceedings of the Fifth International Conference on Weblogs and Social Media, Menlo Park: AAAI Press, 2011.
[29] Scellato S, Noulas A, Mascolo C. Exploiting place features in link prediction on location- based social networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego: ACM Press, 2011: 1046-1054.
[30] Hu Y, Wang Y, Li D, et al. Possible origin of efficient navigation in small worlds[J]. Physical Review Letters, 2011, 106(10): 1-4.
文章导航

/