为提高粉红粘帚霉ACM941 发酵过程中的分生孢子产量,本研究对其固体发酵条件进行了优化。以产孢量为测定指标,通过单因子和正交试验,确定ACM941 固体发酵基础培养基为麦麸和棉籽壳混合物,其比例为4:6;在基础培养基中添加2%玉米粉、2%燕麦粉、3%牛肉膏、2%蛋白胨可获得更大产孢量;对发酵温度、接种量等发酵条件进行了优化,确定发酵培养基初始含水量为30%;种龄48 h;接种量6%;发酵过程中24 h 全光照;菌丝生长温度25℃,产孢温度20℃。在最佳发酵条件下,ACM91产孢量达1.17×109 cfu/g 培养物,比初始发酵水平提高了12.4 倍,为生防制剂的开发奠定了基础。
The solid fermentation of Gliocladium roseum ACM941 has not been well studied so far,this paper proposes to improve the fermentation titer of ACM941 through the single factor and orthogonal design. The optimum fermentation conditions are obtained as follows: The bran and cottonseed shell ratio is 4:6, the corn flour 2%, the oat flour 2%, the beef extract 3%, and the peptone 2%. The optimum mycelial growth and sporulation temperatures are 25℃ and 20℃. The initial water content is 30% and the inoculation volume is 6%. Under these conditions, the maximum conidial yield comes to 1.17×109 cfu/g, 12.4 times higher than the initial fermentation level. This provides a support for the development of the biocontrol agent.
[1] Vargas G S, Pastor G S, March G J. Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media[J]. Microbiological Research, 2009, 164(2): 196-205.
[2] Kubicek C P, Harman G E. Trichoderma and gliocladium[M]. Padstow: Taylor & Francis Ltd Press, 1998: 193-200.
[3] Cota L V, Maffia L A, Mizubuti E S G, et al. Biological control of strawberry gray mold by Clonostachys rosea under field conditions[J]. Biological Control, 2008, 45(3): 515-522.
[4] 张拥华, 高会兰, 马桂珍, 等. 粉红粘帚霉67-1菌株寄生核盘菌研究[J]. 植物病理学报, 2004, 34(3) : 211-214. Zhang Yonghua, Gao Huilan, Ma Guizhen, et al. Mycoparasitism of gliocladium roseum 67-1 on Sclerotinia sclerotiorum[J]. Acta Phytopathologica Sinica, 2004, 34(3): 211-214.
[5] Sharma B K, Singh B M. Biological control of white rot of pea caused by Sclerotinia sclerotiorum (Lib) de Bary[J]. Journal of Biological Control, 1990, 4(2): 132-134.
[6] Wu W S. Control of Sclerotinia rot of sunflower and chrysanthemum[J]. Plant Protection Bulletin, 1991, 33: 45-55.
[7] Whipps J M. Behaviour of fungi antagonistic to Sclerotinia sclerotiorum on plant tissue segments [J]. Journal of General Microbio logy, 1987, 133(6): 1495-1501.
[8] 暴增海, 马桂珍, 张拥华, 等. 粘帚霉发酵液对小麦的促生作用及对小 麦苗期两种病害的防效研究[J]. 中国植保导刊, 2006, 26(8): 5-7. Bao Zenghai, Ma Guizhen, Zhang Yonghua, et al. Study on effects of Cliocladium spp. yeast fermented liquids on promoting wheat growth and control of two wheat seedling diseases[J]. China Plant Protection, 2006, 26(8): 5-7.
[9] McQuilken M P, Gemmell J, Lahdenpem M L. Gliocladium catenulatum as a potential biological control agent of damping-off in beddillg plants[J]. Journal of Phytopalhology, 2001, 49(3): 171-178.
[10] Jones R W, Laniniw T, Hancock J G. Plant growth response to the phytotoxin viridiol produced by the fungus. Gliocladium virens[J]. Weed Science, 1988, 36: 683-687.
[11] Xue A G. Biological control of pathogens causing root rot complex in field pea using Clonostachys rosea Strain ACM941[J]. Phytopathology, 2003, 93: 329-335.
[12] 马桂珍, 暴增海, 王文颇, 等. 粘帚霉固体培养基筛选[J]. 吉林农业大 学学报, 2005, 27(5): 490-493. Ma Guizhen, Bao Zenghai, Wang Wenpo, et al. Selection of solid culture medium of gliocladium spp[J]. Journal of Jilin Agricultural University, 2005, 27(5): 490-493.
[13] 王海栋, 乔苗. 粉红黏帚霉固体发酵工艺的研究进展[J]. 抗感染药 学, 2013, 10(2): 92-94. Wang Haidong, Qiao Miao. Recent research progess on solid fermentation process of gliocladium roseum[J]. Anti-Infection Pharmacy, 2013, 10(2): 92-94.
[14] 白洪志, 王惠, 韩梅, 等. 绿色木霉C-08产纤维素酶的固态发酵条件 优化[J]. 沈阳农业大学学报, 2011, 41(6): 681-685. Bai Hongzhi, Wang Hui, Han Mei, et al. Solid state fermentation condition optimizing of trichoderma viride C-08 for producing cellulase[J]. Journal of Shenyang Agricultural University, 2011, 41(6): 681-685.