研究论文

涠洲F4油田流沙港组储层微观结构及两相渗流特征

  • 张乔良 ,
  • 储莎莎 ,
  • 姜平 ,
  • 许月明 ,
  • 彭文丰 ,
  • 李明
展开
  • 1. 中海石油(中国)有限公司湛江分公司研究院, 湛江 524057;
    2. 中国石油勘探开发研究院廊坊分院, 廊坊 065007
张乔良,工程师,研究方向为油气田开发,电子信箱:Zhangql208@163.com

收稿日期: 2013-11-29

  修回日期: 2014-03-11

  网络出版日期: 2014-05-13

基金资助

中海油重大科技攻关项目(CNOOC-KJ 125 ZDXM 07 LTD 02 ZJ 11)

Microscopic Structural and Seepage Characteristics of Reservoirs in the Group of L WZF4 Oilfield

  • ZHANG Qiaoliang ,
  • CHU Shasha ,
  • JIANG Ping ,
  • XU Yueming ,
  • PENG Wenfeng ,
  • LI Ming
Expand
  • 1. Research Institute of Zhanjiang Branch, CNOOC Ltd., Zhanjiang 524057, China;
    2. Petro China Research Institute of Petroleum Exploration & Development-Langfang, Langfang 065007, China

Received date: 2013-11-29

  Revised date: 2014-03-11

  Online published: 2014-05-13

摘要

涠洲F4 油田位于南海北部湾地区,包含涠洲组和流沙港组两套含油层,其中涠洲组属于高渗油藏,已经全面开发,测井解释结果显示流沙港组储量可观,但低渗透储量高达82%,涠洲组的开发经验不适用于流沙港组。针对流沙港组非均质性强、微观孔隙结构复杂及注水难度大等问题,利用恒速压汞、核磁共振和油水驱替物理模拟等实验技术,对储层微观孔隙结构及油水驱替规律等进行系统研究。研究表明,涠洲F4 油田流沙港组需要技术攻关的储层渗透率是1×10-3~5×10-3 μm2,且储层渗透率低于2×10-3μm2时,以小于1 μm 的喉道为主,渗流阻力大,水驱开发难度大;低渗透油藏,前期保持较高地层压力能明显提高驱替效率,残余油状态水相渗透率低于0.2,注水压力高,后期采用小排量温和注水既有利于有效注水,又能保持较高渗吸效率,以此提高储层采收率。

本文引用格式

张乔良 , 储莎莎 , 姜平 , 许月明 , 彭文丰 , 李明 . 涠洲F4油田流沙港组储层微观结构及两相渗流特征[J]. 科技导报, 2014 , 32(12) : 54 -59 . DOI: 10.3981/j.issn.1000-7857.2014.12.008

Abstract

WZF4 oilfield is located in the Beibu Gulf in the South China Sea area, including the oil-bearing formation for the group of WZ and the group of L. The group of WZ contains high permeability reservoirs, and is fully developed. The logging interpretation results show considerable reserves for the group of L, with the low permeability reserves up to 82%. The development experience for the group of WZ is not applicable to the group of L. The group of L has the problems of heterogeneity, complicated micro pore structure and difficult water injection. The microscopic pore structure and the distribution of the oil-water displacement of reservoirs are obtained by the experiment technologies of the constant rate mercury, the NMR and the physical simulation of the oil-water displacement. It is shown that the reservoir permeability is 1×10-3-5×10-3μm2 for the group of L. When the reservoir permeability is below 2×10-3μm2, most throats are less than 1 μm, the filtration resistance is high and the water flooding development is difficult. For the low permeability reservoir, the high formation pressure can significantly improve the displacement efficiency. The residual oil phase permeability is lower than 0.2, the water injection pressure is high, and the small moderate injection is conducive to the effective injection, and keeps a high imbibition efficiency, to improve the reservoir recovery.

参考文献

[1] 黄延章. 低渗透油藏渗流机理[M]. 北京: 石油工业出版社, 1998. Huang Yanzhang. Fluid mechanics in low-permeability reservoir[M]. Beijing: Petroleum Industry Press, 1998.
[2] 熊生春, 孙军昌, 何英, 等. 低渗透油藏二元复合驱微观机制研究[J]. 科技导报, 2012, 30(35): 20-23. Xiong Shengchun, Sun Junchang, He Ying, et al. Microscopic mechanism of binary combination flooding in low permeability reservoir[J]. Science & Technology Review, 2012, 30(35): 20-23.
[3] 何顺利, 焦春艳, 王建国, 等. 恒速压汞与常规压汞的异同[J]. 断块油 气田, 2011, 18(2): 235-237. He Shunli, Jiao Chunyan, Wang Jianguo, et al. Discussion on the differences between constant-speed mercury injection and conventional mercury injection techniques[J]. Fault-block Oil & Gas Field, 2011, 18 (2): 235-237.
[4] 杨正明, 张英芝, 郝明强, 等. 低渗透油田储层综合评价方法[J]. 石油 学报, 2006, 27(2): 64-67. Yang Zhengming, Zhang Yingzhi, Hao Mingqiang, et al. Comprehensive evaluation of reservoir in low-permeability oilfields[J]. Acta Petrolei Sinica, 2006, 27(2): 64-67.
[5] 杨胜来, 魏俊之. 油层物理学[M]. 北京: 石油工业出版社, 2007. Yang Shenglai, Wei Junzhi. Petro-physics[M]. Beijing: Petroleum Industry Press, 2007.
[6] 肖立志. 核磁共振成像测井与岩石核磁共振及其应用[M]. 北京: 科学 出版社, 1998. Xiao Lizhi. NMR imaging logging principles and applications[M]. Beijing: Science Press, 1998.
[7] 王为民, 郭和坤, 叶朝辉. 利用核磁共振可动流体评价低渗透油田开 发潜力[J]. 石油学报, 2001, 22(6): 40-44. Wang Weimin, Guo Hekun, Ye Zhaohui. The evaluation of development potential in low permeability oil field by the aid of NMR movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44.
[8] 肖亮, 肖忠祥. 核磁共振测井T2cutoff确定方法及适用性分析[J]. 地球物 理学进展, 2008, 23(1): 167-172. Xiao Liang, Xiao Zhongxiang. Analysis of methods for determining NMR T2cutoff and its applicability[J]. Progress in Geophysics, 2008, 23(1): 167-172.
[9] Yakov V, Wim L. Constructing capillary pressure curvesfrom NMR log data in the presence of hydrocarbons[C]// SPWLA 40th Annual Logging Symposium, Oslo, Norway, May 30-June 3, 1999.
[10] Looyestiji W J. Distinguishing fluid properties and producibility from NMR logs[C]//Proceeding of the 6th Nordic Symposium on Petrophysics, Trondheim, Norway, May 15-16, 2001.
[11] 何雨丹, 毛志强, 肖立志, 等. 利用核磁共振T2分布构造毛管压力曲 线的新方法[J]. 吉林大学学报: 地球科学版, 2005, 35(2): 177-181. He Yudan, Mao Zhiqiang, Xiao Lizhi, et al. A new method to obtain capillary pressure curve using NMR T2 distribution[J]. Journal of Jilin Unviersity: Earth Science Edition, 2005, 35(2): 177-181.
[12] Mao Z Q, Kuang L C, Sun Z C, et al. Effects of hydrocar bon on deriving pore structure in formation from NMR T2 data[C]. 48th Annual Logging Symposium, Austin, Texas, June 3-6, 2007.
[13] 石油测井情报协作组编. 测井新技术应用[M]. 北京: 石油工业出版 社, 1998. Petroleum Logging Information Collaborative Group. The new logging technology[M]. Beijing: Petroleum Industry Press, 1998.
[14] 肖亮译. 利用NMR和密度测井资料改进致密气层孔隙度评价[J]. 测 井与射孔, 2007, 10(2): 8-10. Xiao Liangyi. Improved porosity tight gas reservoir evaluation based on NMR and density logging data[J]. Logging & Perforation, 2007, 10(2): 8-10.
[15] 张玉敏, 申会堂. 核磁共振在石油测井中的应用[J]. 核电子学与探测 技术, 2003, 23(1): 83-84, 90. Zhang Yumin, Shen Huitang. The nuclear magnetic resonance well logging[J]. Nuclear Electronics & Detection Technology, 2003, 23(1): 83-84, 90.
[16] 肖立志. 我国核磁共振测井应用中的若干问题[J]. 测井技术, 2007, 31(5): 401-407. Xiao Lizhi. Some important issues for NMR logging applications in China[J]. Well Logging Technology, 2007, 31(5): 401-407.
[17] 郭共建, 谷长春. 水驱油孔隙动用规律的核磁共振实验研究[J]. 西安 石油大学学报: 自然科学版, 2005, 20(5): 45-48. Guo Gongjian, Gu Changchun. Experimental study of active pore distribution during water driving by using NMR[J]. Journal of Xi'an Shiyou University: Natural Science Edition, 2005, 20(5): 45-48.
[18] 杨正明, 李治硕, 王学武, 等. 特低渗透油田相对渗透率曲线测试新 方法[J]. 石油学报, 2010, 31(4): 629-632. Yang Zhengming, Li Zhishuo, Wang Xuewu, et al. A new method for testing relative permeability of ultra-low permeability reservoirs[J]. Acta Petrolei Sinica, 2010, 31(4): 629-632.
[19] 杨正明, 朱维耀, 陈权, 等. 低渗透裂缝性砂岩油藏渗吸机理及其数 学模型[J]. 江汉石油学院学报, 2001, 23(S1): 25-27. Yang Zhengming, Zhu Weiyao, Chen Quan, et al. Imbibition mechanism of low permeability fractured sandstone reservoir and its mathematical model[J]. Journal of Jianghan Petroleum Institute, 2001, 23(S1): 25-27.
[20] 李亮, 胡建国. 超前注水是低渗透油田开发的重要途径[J]. 新疆石油 地质, 2001, 6: 232-234. Li Liang, Hu Jianguo. Advanced water injection is an important way for the development of low permeability oil field[J]. Xinjiang Petroleum Geology, 2001, 6: 232-234.
[21] 李南, 程林松. 超低渗透油藏注水方式研究[J]. 油气地质与采收率, 2012, 19(4): 78-81. Li Nan, Cheng Linsong. Study on water injection in ultra low permeability reservoir[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(4): 78-81.
[22] 王先德, 席继强. 温和注水方式在桑合油田的应用[J]. 断块油气田, 2009, 16(4): 105-108. Wang Xiande, Xi Jiqiang. Application of moderate injection mode in Sanghe Oilfield[J]. Fault-block Oil & Gas Field, 2009, 16(4): 105-108.
[23] 王学武, 杨正明. 核磁共振研究低渗透砂岩油水两相渗流规律[J]. 科 技导报, 2009, 27(15): 56-58. Wang Xuewu, Yang Zhengming. Experimental study of water-oil twophase fluid flow in low permeability reservoir by nuclear magnetic resonance[J]. Science & Technology Review, 2009, 27(15): 56-58.
[24] 何文祥, 马清. 特低渗透储层渗流特征和影响因素[J]. 科技导报, 2011, 29(1): 36-39. He Wenxiang, Ma Qing. Seepage characteristics and influencing factors in ultra-low permeability reservoirs[J]. Science & Technology Review, 2011, 29(1): 36-39.
文章导航

/