为研究钨穿甲弹对超音速反舰导弹发动机舱的毁伤效应,采用ANSYS/LS-DYNA软件,对钨穿甲弹以1000m/s着靶速度,侵彻速度为730m/s的来袭超音速反舰导弹的发动机舱进行了数值模拟,获得钨穿甲弹入射角、偏轴距离对毁伤超音速反舰导弹发动机舱的影响规律。计算结果表明,在钨穿甲弹能侵入发动机的前提下,偏轴距离相同的各工况,入射角较小的工况,钨穿甲弹侵入发动机后的剩余质量较大,但剩余速度较小;入射角相同的各工况,偏轴距离越小,钨穿甲弹侵入发动机后的剩余质量、剩余速度和剩余动能均越大。以钨穿甲弹剩余动能为毁伤能力评估标准,综合来看,在较小的偏轴距离、能侵入发动机的前提下,入射角较小的钨穿甲弹对来袭超音速反舰导弹的发动机舱毁伤效果较好。
This paper studies the damage effect of the tungsten cored armor piercing round (APCR) on the supersonic missile engine cabin. The APCR at a speed of 1000 m/s penetrating into a coming attack supersonic anti-ship missile at a speed of 730 m/s is simulated by the ANSYS/LS-DYNA software, and the rules of damage for the APCR penetrating the engine cabin of the supersonic anti-ship missile at different incidence angles and off-axis distances are acquired. On the premise that the APCR with the same offaxis distance in each condition can penetrate into the engine, the results show that the smaller incidence angle of the condition, the bigger remaining mass after the APCR penetrates into the engine, but the smaller residual velocity. On the premise that the APCR with the same incidence angle in each condition can penetrate into the engine, the results show that the smaller off-axis distance of the condition, the bigger remaining mass, residual velocity and kinetic energy after the APCR penetrates into the engine. When the residual kinetic energy of the APCR is taken as the standard for the damage ability, in general, under the condition that the APCR can penetrate into the engine, the smaller off- axis distance and incidence angle are, the better damage effect after the APCR penetrates into the engine cabin of supersonic anti-ship missile is.
[1] 杜茂华, 王伟力, 黄勇. 舰载超近程反导弹药冲击引爆战斗部的研究[J]. 工程爆破, 2012, 18(2): 14-17. Du Maohua, Wang Weili, Huang Yong. Research on impacting and igniting warhead by super close-in anti-missile ammunition on board[J]. Engineering Blasting, 2012, 18(2): 14-17.
[2] 张春来. 近程反导武器系统[J]. 舰载武器, 2002, 1: 29-31. Zhang Chunlai. Close-in anti-missile weapon systems[J]. Shipborne Weapons, 2002, 1: 29-31.
[3] 宋贵宝, 孔丽, 李红亮, 等. 密集阵反导系统拦截反舰导弹模型研究[J]. 系统仿真学报, 2004, 16(10): 2128-2130. Song Guibao, Kong Li, Li Hongliang, et al. Research on the model of the interception of anti-ship missile by phalanx close in weapon system[J]. Journal of System Simulation, 2004, 16(10): 2128-2130.
[4] Recht R F, Ipson T W J. A geometrically nonlinear thero of elastic plates applied mechanics[J]. Energetic Materials, 1963, 30(2): 384-387.
[5] 谷长春, 石明全. 基于ANSYS/LS-DYNA的高速碰撞过程的数值模拟[J]. 系统仿真学报, 2009, 21(15): 4621-4624. Gu Changchun, Shi Mingquan. Numerical simulation of high-velocity impact with ANSYS/LS-DYNA[J]. Journal of System Simulation, 2009, 21(15): 4621-4624.
[6] 王向东, 肖艳文, 韩用, 等. 弹体材料参数对侵深影响规律数值模拟研究[J]. 科技导报, 2012, 30(31): 33-37. Wang Xiangdong, Xiao Yanwen, Han Yong, et al. Numerical simulation for the effect of material parameters on penetration depth[J]. Science & Technology Review, 2012, 30(31): 33-37.
[7] Livermore Software Technology Corporation. LS-DYNA keyword user's manual (971v)[M]. California: Livermore Software Technology Corporation, 2007.
[8] 高光发, 李永池, 黄瑞源, 等. 杆弹头部形状对侵彻行为的影响及其机制[J]. 弹箭与制导学报, 2012, 32(6): 51-54. Gao Guangfa, Li Yongchi, Huang Ruiyuan, et al. Effect of nose shape on penetration performance of long-rod penetrator and its mechanism[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6): 51-54.
[9] 刘群, 陈朗, 伍俊英. 空间碎片超高速碰撞复合板数值模拟分析[J]. 兵工学报, 2010, 31(S1): 69-73. Liu Qun, Chen Lang, Wu Junying. Simulation for fragment debris impacting composite shield in hypervelocity[J]. Acta Armamentarii, 2010, 31(S1): 69-73.
[10] 兰彬, 文鹤鸣. 钨合金长杆弹侵彻半无限钢靶的数值模拟及分析[J]. 高压物理学报, 2008, 22(3): 245-252. Lan Bin, Wen Heming. Numerical simulation and analysis of the penetration of tungsten alloy long rods into semi-infinite armor steel targets[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 245-252.