研究论文

层理性泥页岩井壁失稳机制的FLAC3D 数值分析

  • 赵靖影 ,
  • 邓金根 ,
  • 黄桢 ,
  • 朱海燕
展开
  • 1. 中国石油西南油气田分公司川西北气矿, 江油 621709;
    2. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249
赵靖影,助理工程师,研究方向为油气田勘探开发,电子信箱:luzhouzjy@163.com

收稿日期: 2013-11-20

  修回日期: 2014-03-13

  网络出版日期: 2014-05-19

基金资助

国家自然科学基金重点项目(51134004);国家科技重大专项(2011ZX05024-003-02)

Numerical Analysis of Borehole Instability Mechanism in Layered Shale Formation Based on FLAC3D

  • ZHAO Jingying ,
  • DENG Jingen ,
  • HUANG Zhen ,
  • ZHU Haiyan
Expand
  • 1. Northwest Gas Station, Southwest Oil & Gas Filed Company, PetroChina, Jiangyou 621709, China;
    2. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China

Received date: 2013-11-20

  Revised date: 2014-03-13

  Online published: 2014-05-19

摘要

在层理性泥页岩钻井过程中经常出现井壁失稳,影响钻井的顺利进行。考虑层理性泥页岩的岩块和层理特性,采用层理岩石单元和层理面单元的组合模型描述层理性地层的破坏模式。利用有限差分数值模拟软件FLAC3D建立层理性泥页岩井眼的有限差分计算模型,模拟了实际钻井过程。和均质地层对比,分析了层理性泥页岩井眼的塑性区分布、井眼位移和次生应力分布特点。数值模拟再现了层理面的变形破坏现象,描述了层理面的滑移特征。研究结果表明,数值模拟结果和实际钻井现象相吻合,层理面上下两侧位移差最大为0.8mm,层理面滑移位移是错动位移的8.13倍,证明了层理面的滑移是层理性泥页岩井壁失稳的根本原因。分别模拟了地应力、层理面空间分布、井眼轨迹参数和井眼尺寸对倾斜层理直井和水平层理斜井的变形破坏规律。

本文引用格式

赵靖影 , 邓金根 , 黄桢 , 朱海燕 . 层理性泥页岩井壁失稳机制的FLAC3D 数值分析[J]. 科技导报, 2014 , 32(13) : 46 -52 . DOI: 10.3981/j.issn.1000-7857.2014.13.008

Abstract

The layered shale formation is an extremely troublesome formation of borehole instability, with a significant influence on drilling. This paper studies the effect of joint weak planes in the rock mass and proposes a combined model, which combines both the bedding plane model and the intact rock model to describe the characteristics of the layered formation, especially the characteristics of the bedding plane. The finite difference software FLAC3D is used to establish the numerical model of the layered shale formation and to simulate the drilling process. To compare with the isotropic shale formation, the distributions of the failed area, the borehole displacement and the secondary stress in the layered shale formation are obtained. The failure process of the bedding plane and characteristics of the deformation are well simulated. The difference of the displacements on the two sides of the bedding plane is up to 0.8 mm and the slip displacement is 8.13 times the shift displacement. The results agree with the drilling practice. The slip behavior of the bedding plane is shown to be the central cause of the borehole instability in the layered shale formation. The effect of the geo-stress, the occurrence of the bedding plane, the parameters of the well track and the borehole size on the well deformation in inclined and horizontal layered formations are also simulated.

参考文献

[1] 邓虎. 裂缝性泥页岩的水化稳定性研究及其应用[D]. 成都: 西南石油学院, 2004. Deng Hu. Research and application of hydration stability in fractured shale[D]. Chengdu: Southwest Petroleum University, 2004.
[2] 朱泽奇, 盛谦, 梅松华, 等. 改进的遍布节理模型及其在层状岩体地下工程中的应用[J]. 岩土力学, 2009, 30(10): 3115-3122. Zhu Zeqi, Sheng Qian, Mei Songhua, et al. Improved ubiquitous-joint model and its application to underground engineering in layered rockmasses[J]. Rock and Soil Mechanics, 2009, 30(10): 3115-3122.
[3] Steiger R P, Leung K P. Quantitative determination of the mechanical Properties of shales[J]. SPE drilling engineering, 1992, 7(3): 181-185.
[4] Gallant C, Zhang J G, Wolfe C A, et al. Wellbore stability considerations for drilling high-angle wells through finely laminated shale: A case study from terra nova[C]. SPE Annual Technical Conference and Exhibition, Anaheim, California, USA, November 11-14, 2007.
[5] Okland D, Cook J M. Bedding related borehole instability in high-angle wells[C]. SPE/ISRM Conference on Rock Mechanics in Petroleum Engineering, Eurock'98, Trondheim, Norway, July 7-10, 1998.
[6] Yamamoto K, Shioya Y, Uryu N. Discrete element approach for the wellbore instability of laminated and fissured rocks[C]. SPE/ISRM Rock Mechanics Conference, Irving, Texas, October 20-23, 2002.
[7] Narayanasamy R, Barr D, Mine A. Wellbore instability predictions within the cretaceous mudstones, clair field, west of Shetlands[J]. SPE Drilling & Completion, 2010, 25(4): 518-529.
[8] 耶格J C, 库克N G W. 岩石力学基础[M]. 中国科学院工程力学研究所, 译. 北京: 科学出版社, 1981. Jaeger J C, CookN G W. Fundamentalsof rock mechanics[M]. Chinese Research Institute of Engineering Mechanics, Chinese Academy of Science, trans. Beijing: Science Press, 1981.
[9] Fjar E. Petroleum related rock mechanics[M]. The Netherlands: Elsevier Science Publisher, 1992.
[10] McLamore R T, Gray K E. A strength criterion for anisotropic rocks based upon experimental observations[C]. Annual Meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Los Angeles, California, February 19-23, 1967.
[11] Chenevert M E, Gatlin C. Mechanical anisotropies of laminated sedimentary[J]. Society of Petroleum Engineers Journal, 1965, 5(1): 67-77.
[12] Crook A J L, Yu J G, Willson S M. Development of an orthotropic 3D Elastoplastic material model for shale[C]. SPE/ISRM Rock Mechanics Conference, Irving, Texas, October 20-23, 2002.
[13] 张志增. 横观各向同性岩体位移反分析的理论与应用研究[D]. 北京: 清华大学, 2010. Zhang Zhizeng. Theory and application research on displacement back analysis of transversely isotropic rock mass[D]. Beijing: Tsinghua University, 2010.
[14] 张玉军, 唐仪兴. 考虑层状岩体强度异向性的地下洞室平面有限元分析[J]. 岩土工程学报, 1999, 21(3): 307-310. Zhang Yujun, Tang Yixing. 2-D FEM analysis for an underground opening considering the strength-anisotropy of the layered rock mass[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(3): 307-310.
[15] 张玉军, 刘谊平. 层状岩体的三维弹塑性有限元分析[J]. 岩石力学与工程学报, 2002, 21(11): 1615-1619. Zhang Yujun, Liu Yiping. 3D elasto-plastic FEM analysis on layered rockmass[J]. Chinese Journal of Rock Mechanicsand Engineering, 2002, 21(11): 1615-1619.
[16] 徐磊, 任青文, 杜小凯, 等. 层状岩体各向异性弹塑性模型及其数值实现[J]. 地下空间与工程学报, 2010, 6(4): 763-769. Xu Lei, Ren Qingwen, Du Xiaokai, et al. An anisotropic elasto plastic constitutive model for layered rock massesand its implementation[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(4): 763-769.
[17] 周维垣. 高等岩石力学[M]. 北京: 水利电力出版社, 1990. Zhou Weiyuan. Advanced rock mechanics[M]. Beijing: China Water Power Press, 1990.
[18] 黄书岭, 徐劲松, 丁秀丽, 等. 考虑结构面特性的层状岩体复合材料模型与应用研究[J]. 岩石力学与工程学报, 2010, 29(4): 743-756. Huang Shuling, Xu Jinsong, Ding Xiuli, et al. Study of layered rock mass composite model based on characteristics of structural plane and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 743-756.
[19] 梅松华. 层状岩体开挖变形机制及破坏机理研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2008. Mei Songhua. Study on deformation mechanism and failure characteristics of layered rock masses due to excavation[D]. Wuhan: Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Science, 2008.
[20] 蒋青青, 胡毅夫, 赖伟明. 层状岩质边坡遍布节理模型的三维稳定性分析[J]. 岩土力学, 2009, 30(3): 712-716. Jiang Qingqing, Hu Yifu, Lai Weiming. Three-dimensional stability analysis of stratified rock slope based on ubiquitous-joint model[J]. Rock and Soil Mechanics, 2009, 30(3): 712-716.
[21] 谢和平, 陈忠辉. 岩石力学[M]. 北京: 科学出版社, 2004. Xie Heping, Chen Zhonghui. Rock mechanics[M]. Beijing: Science Press, 2004.
[22] 陈育民. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2009. Chen Yumin. Basic and engineeringexamples of FLAC/FLAC3D[M]. Beijing: China Water Power Press, 2009.
[23] 刘波, 韩彦辉. FLAC原理、实例与应用指南[M]. 北京: 人民交通出版社, 2005. Liu Bo, Han Yanhui. Theory examples and application guide of FLAC[M]. Beijing: China Communications Press, 2005.
文章导航

/