综述文章

当前小麦研究的国际热点

  • 张英华 ,
  • 王志敏 ,
  • 周顺利 ,
  • 王彬 ,
  • 薛盈文 ,
  • 刘云鹏 ,
  • 王超 ,
  • 奚文星
展开
  • 中国农业大学农学与生物技术学院, 北京 100193
张英华,副教授,研究方向为作物节水高产栽培生理,电子信箱:zhangyh1216@126.com

收稿日期: 2014-01-02

  修回日期: 2014-03-17

  网络出版日期: 2014-05-19

基金资助

国家科技支撑计划项目(2011BAD16B14);农业部公益性行业科研专项项目(201303133,201203031);国家小麦产业技术体系建议专项(CARS-3-1-25);北京市青年英才专项(31056101)。

Current Hotspots of International Wheat Research

  • ZHANG Yinghua ,
  • WANG Zhimin ,
  • ZHOU Shunli ,
  • WANG Bin ,
  • XUE Yingwen ,
  • LIU Yunpeng ,
  • WANG Chao ,
  • XI Wenxing
Expand
  • College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

Received date: 2014-01-02

  Revised date: 2014-03-17

  Online published: 2014-05-19

摘要

综述了当前国际上小麦研究的几个热点,包括小麦产量潜力的研究、优异种质资源的利用、气候变化与小麦生产、小麦抗非生物胁迫、小麦微量营养和小麦综合管理。分析表明,未来产量的提高应主要依靠生物产量的增长,在此基础上尽可能维持或增加收获指数;小麦种质资源丰富,含大量优异基因,可用于提高植株抗性和改善品质;全球变暖会威胁粮食安全,需提高小麦生产对气候变化的适应能力;提高小麦耐逆机能,除重视利用一般的生理机制外,需要更加突出地重视利用贮藏物质运转、持绿性、非叶光合机能、根系构型等重要性状;提高籽粒微量营养素含量可通过施肥、常规育种和转基因技术实现;实施小麦综合管理可克服小麦生产中的多个限制因子,通过发挥技术和要素的互作协同效应,实现小麦高产高效。

本文引用格式

张英华 , 王志敏 , 周顺利 , 王彬 , 薛盈文 , 刘云鹏 , 王超 , 奚文星 . 当前小麦研究的国际热点[J]. 科技导报, 2014 , 32(13) : 64 -69 . DOI: 10.3981/j.issn.1000-7857.2014.13.011

Abstract

This review focuses on recent advances in some key areas of wheat production, namely determination of potential yield, utilization of germplasm resources, resistance to abiotic stresses, micronutrient and integrated crop management. The main opinions are as follows: Raising wheat yield in the future may rely mainly on the growth of biomass, based on which the harvest index needs to be maintained or increased as much as possible. Wheat germplasm resources are rich, including a large number of excellent genes, which can be used to improve the resistance to adversity and quality. Global warming threatens food security, thus the adaptability of wheat production to climate change needs to be improved. To improve wheat resistance to adversity, important traits including translocation of reserves, the stay-green ability, non-leaf photosynthetic property and root system configuration should be considered as well as common physiological mechanisms. The biofortification of grain micronutrient can be realized by application of fertilizers, conventional plant breeding and genetic- engineering techniques. Application of integrated wheat management can overcome the multiple limiting factors in wheat production, and high yield and efficiency can be achieved by the synergistic interaction of technologies and elements.

参考文献

[1] Rosegrant M W, Agcaoili-Sombilla M, Perez N D. Global food projections to 2020: Implications for investment[M]. Washington, DC: Diane Publishing, 1995.
[2] Evans L T. Crop evolution, adaptation and yield[M]. Cambridge, UK: Cambridge University Press, 1993: 169-267.
[3] Fischer R A. Wheat physiology at CIMMYT and raising the yield plateau[C]// Increasing Yield Potential in Wheat: Breaking the Barriers. Mexico: CIMMYT, 1996.
[4] Reynolds M P, Ortiz-Monasterio J L, McNab A. Application of physiology in wheat breeding[M]. Mexico: CIMMYT, 2001.
[5] Siddique K H M, Kirby E J M, Perry M W. Ear: Stem ratio in old and modern wheat varieties; Relationship with improvement in number of grains per ear and yield[J]. Field Crops Research, 1989, 21: 59-78.
[6] Shearman V J, Sylvester-Bradley R, Scott R K, et al. Physiological processes associated with wheat yield progress in the UK[J]. Crop Science, 2005, 45: 175-185.
[7] Ku M S B, Kano-Murakami Y, Matsuoka M. Evolution and expression of C4 photosynthesis gene[J]. Plant Physiology, 1996, 111: 949-957.
[8] Araus J L, Amaro T, Casadesús J, et al. Relationships between ash content, carbon isotope discrimination and yield in durum wheat[J]. Australian Journal of Plant Physiology, 1998, 25(7): 835-842.
[9] Wang Z M, Wei A L, Zheng D M. Photosynthetic characteristics of nonleaf organs of winter wheat cultivars differing in ear type and their relationship with grain mass per ear[J]. Photosynthetica, 2001, 39: 239-244.
[10] Barnabas B, Jager K, Feher A. The effect of drought and heat stress on reproductive processes in cereals[J]. Plant Cell and Environment, 2008, 31: 11-38.
[11] Gonzalez F G, Miralles D J, Slafer G A. Wheat floret survival as related to pre-anthesis spike growth[J]. Journal of Experimental Botany, 2011, 62(14): 4889-4901.
[12] Slafer G A, Araus J L, Royo C, et al. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments[J]. Annals of Applied Biology, 2005, 146: 61-70.
[13] Abbate P E, Andrade D H, Lazaro L, et al. Grain yield in recent Argentine wheat cultivars[J]. Crop Science, 1998, 38: 1203-1209.
[14] Bancal P. Positive contribution of stem growth to grain number per spike in wheat[J]. Field Crops Research, 2008, 105: 27-39.
[15] Acreche M, Briceno-Felix G, Martín Sanchez J A, et al. Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain[J]. European Journal of Agronomy, 2008, 28: 162-170.
[16] Reynolds M, Bonnett D, Chapman S C, et al. Raising yield potential of wheat. I. Overview of a consortium approach and breeding sragegies[J]. Journal of Experimental Botany, 2011, 62(2): 439-452.
[17] Börner A, Neumann K, Kobiljski B. Wheat genetic resources—How to exploit[J]. Czech Journal of Genetics and Plant Breeding, 2011, 47: 43-48.
[18] Saulescu N N, Ittu G, Ciuca M, et al. Transferring useful rye genes to wheat, using Triticale as a bridge[J]. Czech Journal of Genetics and Plant Breeding, 2011, 47: 56-62.
[19] Friebe B, Hatchett J H, Sears R G, et al. Transfer of Hessian fly resistance from "Chaupon" rye to hexaploid wheat via a 2BS/2Rl wheatrye chromosome translocation[J]. Theoretical and Applied Genetics, 1990, 79: 385-389.
[20] Kim W, Johnson J W, Graybosch R A, et al. The effect of T1DL.1RS wheat-rye chromosomal translocation on agronomic performance and end-use quality of soft wheat[J]. Cereal Research Communications, 2003, 31: 301-308.
[21] Xie W, Nevo E. Wild emmer: Genetic resources, gene mapping and potential for wheat improvement[J]. Euphytica, 2008, 164: 603-614.
[22] Braun H J, Atlin G, Payne T. Multi-location testing as a tool to identify plant response to global climate change[M]. Reynolds M P. Climate Change and Crop Production. Wallingford, UK: CABI Publishers, 2010: 115-138.
[23] Chaves M M, Maroco J P, Pereira J S. Understanding plant responses to drought-from genes to the whole plant[J]. Functional Plant Biology, 2003, 30: 239-264.
[24] Chaves M M. Crop resistance to abiotic stresses-mechanisms, traits and mitigation strategies[C]. 6th International Crop Science Congress, Brasil, August 6-10, 2012.
[25] Zhang X Y, Pei D, Chen S Y. Root growth and soil water utilization of winter wheat in the North China Plain[J]. Hydrological Processes, 2004, 18(12): 2275-2287.
[26] 薛丽华, 张英华, 段俊杰, 等. 调亏灌溉下冬小麦根系分布与耗水的关系[J]. 麦类作物学报, 2010, 30(4): 693-697. Xue Lihua, Zhang Yinghua, Duan Junjie, et al. Relationship between root distribution and water consumption of winter wheat under regulated deficit irrigation[J]. Journal of Triticeae Crops, 2010, 30(4): 693-697.
[27] Gewin V. Food: An underground revolution[J]. Nature, 2010, 466: 552-553.
[28] Waines J G, Ehdaie B. Domestication and crop physiology: Roots of green-revolution wheat[J]. Annals of Botany, 2007, 100(5): 991-998.
[29] Den Herder G, Van Isterdael G, Beeckman T, et al. The roots of a new green revolution[J]. Trends in Plant Science, 2010, 15(11): 600-607.
[30] Oritiz-Monasterio I, Palacios-Rojas N, Meng E, et al. Enhancing the mineral and vitamin content of wheat and maize through plant breeding[J]. Journal of Cereal Science, 2007, 46: 293-307.
[31] Hussain S, Maqsood M A, Rahmatullah. Increasing grain zinc and yield of wheat for the developing world: A review[J]. Emirates Journal of Food Agriculture, 2010, 22(5): 326-339.
[32] Yilmaz A, Ekiz H, Torun B, et al. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils[J]. Journal of Plant Nutrition, 1997, 20: 461-471.
[33] SperottoRA,RicachenevskyFK,WaldowVdeA,etal.Ironbiofortification in rice: It's a long way to the top[J]. Plant Science, 2012, 190: 24-39.
[34] Kobayashi T, Nakanishi H, Takahashi M, et al. In vivo evidence that Ids3 from Hordeum vulgare encodes a dioxygenase that converts 2'-deoxymugineic acid to mugineic acid in transgenic rice[J]. Planta, 2001, 212: 864-871.
[35] Ishimaru Y, Masuda H, Suzuki M, et al. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants[J]. Journal of Experimental Botany, 2007, 58: 2909-2915.
[36] Ishimaru Y, Masuda H, Bashir K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. Plant Journal, 2010, 62: 379-390.
[37] Sperotto R A, Ricachenevsky F K, Duarte G L, et al. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor[J]. Planta, 2009, 230: 985-1002.
[38] Kuwano M, Mimura T, Takaiwa F, et al. Generation of stable low phytic acid transgenic rice through antisense repression of the 1D-myoinositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter[J]. Plant Biotechnology Journal, 2009, 7: 96-105.
[39] Scheeren P L, Caetano V. Co-evolution of breeding strategies and cropping systems for raising wheat yield potentials on stressful environments[C]. 6th International Crop Science Congress, Brasil, August 6-10, 2012.
文章导航

/