[1] Kerr R A. Natural gas from shale bursts onto the scene[J]. Science, 2010, 328(5986): 1624-1626.
[2] Rozell D J, Reaven S J. Water pollution risk associated with natural gas extraction from the marcellus shale[J]. Risk Analysis, 2012, 32(8): 1382-1393.
[3] EkstromV.Thefutureofnaturalgas[R].Massachusetts,USA: Massachusetts Institute of Technology, 2011.
[4] Gregory K B, Vidic R D, Dzombak D A. Water management challenges associated with the production of shale gas by hydraulic fracturing[J]. Elements, 2011, 7(3): 181-186.
[5] Gaudlip A W, Paugh L O, Hayes T D. Marcellus shale water management challenges in pennsylvania[C]//Proceedings of SPE Shale Gas Production Conference. Texas, USA: Society of Petroleum Engineers, 2008.
[6] Thakre P, Shernkar L. Building momentum for advanced water technology solutions: The marcellus effect[R]. San Francisco, CA: The Artemis Project, 2011.
[7] Vidic R D, Brantley S L, Vandenbossche J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1288-1288.
[8] Lutz B D, Lewis A N, Doyle M W. Generation, transport, and disposal of wastewater associated with marcellus shale gas development[J]. Water Resources Research, 2013, 49(2): 647-656.
[9] Council G W P, Consulting A. Modern shale gas development in the United States: A primer[M]. Oklahoma City: Ground Water Protection Council, 2009: 96.
[10] Kargbo D M, Wilhelm R G, Campbell D J. Natural gas plays in the marcellus shale: Challenges and potential opportunities[J]. Environmental Science & Technology, 2010, 44(15): 5679-5684.
[11] Wilson J M, Van Briesen J M. Oil and gas produced water management and surface drinking water sources in pennsylvania[J]. Environmental Practice, 2012, 14: 288-300.
[12] Alley B, Beebe A, Rodgers J, Jr, et al. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources[J]. Chemosphere, 2011, 85(1): 74-82.
[13] Struchtemeyer C G, Elshahed M S. Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in north central texas, USA[J]. Fems Microbiology Ecology, 2012, 81(1): 13-25.
[14] Bonapace J, Giglio M, Moggia J, et al. Water conservation: Reducing fresh water consumption by using produced water for base fluid in hydraulic fracturing-case histories in argentina[C]//Proceedings of SPE Latin America and Caribbean Petroleum Engineering Conference. Mexico: Society of Petroleum Engineers of AIME (SPE), 2012.
[15] Howarth R W, Santoro R, Ingraffea A. Methane and the greenhouse-gas footprint of natural gas from shale formations[J]. Climatic Change, 2011, 106(4): 679-690.
[16] Howarth R W, Santoro R, Ingraffea A. Venting and leaking of methane from shale gas development: Response to Cathles et al[J]. Climatic Change, 2012, 113(2): 537-549.
[17] Tollefson J. Gas drilling taints groundwater[J]. Nature, 2013, 498(7455): 415-416.
[18] Qiu J. Environmental science china to spend billions cleaning up groundwater[J]. Science, 2011, 334(6057): 745-745.
[19] 雷鸣, 曾敏, 王利红, 等. 湖南市场和污染区稻米中As、Pb、Cd污染及其健康风险评价[J]. 环境科学学报, 2010, 30: 2314-2320. Lei Ming, Zeng Min, Wang Lihong, et al. Arenic, lead, and cadmium pollution in rice from Hunan markets and contaminated areas and their health risk assessment[J]. Acta Sientiae Circumstantiae, 2010, 30: 2314-2320.
[20] 王玉梅, 党俊芳. 油气田地区的地下水污染分析[J]. 地质灾害与环境保护, 2000, 11: 271-273. Wang Yumei, Dang Junfang. Groundwater contamination analysis of oil and gas region[J]. Journal of Geological Hazards and Environment Preservation, 2000, 11: 271-273.
[21] Zeng G M, Chen M, Zeng Z T. Shale gas: Surface water also at risk[J]. Nature, 2013, 499(7457): 154-154.
[22] Ferrar K J, Michanowicz D R, Christen C L, et al. Assessment of effluent contaminants from three facilities discharging marcellus shale wastewater to surface waters in pennsylvania[J]. Environmental Science & Technology, 2013, 47(7): 3472-3481.
[23] Olmstead S M, Muehlenbachs L A, Shih J S, et al. Shale gas development impacts on surface water quality in pennsylvania[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 4962-4967.
[24] Entrekin S, Evans-White M, Johnson B, et al. Rapid expansion of natural gas development poses a threat to surface waters[J]. Frontiers in Ecology and the Environment, 2011, 9(9): 503-511.
[25] Williams H F L, Havens D L, Banks K E, et al. Field-based monitoring of sediment runoff from natural gas well sites in Denton County, Texas, USA[J]. Environmental Geology, 2008, 55(7): 1463-1471.
[26] Moore S L, Cripps C M. Bacterial survival in fractured shale-gas wells of the Horn River Basin[J]. Journal of Canadian Petroleum Technology, 2012, 51(4): 283-289.
[27] World Health Organization. Environmental health criteria 216: Disinfectants and disinfectant byproducts[R]. Geneva: World Health Organization, 2000.
[28] Rassenfoss S. From flowback to fracturing: Water recycling grows in the marcellus shale[J]. Journal of Petroleum Technology, 2011, 63: 48-51.
[29] Koren A, Nadav N. Mechanical vapour compression to treat oil field produced water[J]. Desalination, 1994, 98(1-3): 41-48.
[30] Veza J. Mechanical vapour compression desalination plants: A case study[J]. Desalination, 1995, 101(1): 1-10.
[31] Zimerman Z. Development of large capacity high efficiency mechanical vapor compression (MVC) units[J]. Desalination, 1994, 96(1-3): 51-58.
[32] 李清方, 刘中良, 庞会中, 等. 基于机械蒸汽压缩蒸发的油田污水脱盐系统及分析[J]. 化工学报, 2011, 62(7): 1963-1969. Li Qingfang, Liu Zhongliang, Pang Huizhong, et al. Process simulation and analysis of mechanical vapor compression based on oilfiled waste water desalination systems[J]. CIESC Journal, 2011, 62(7): 1963-1969.
[33] Shaffer D L, Arias Chavez L H, Ben-Sasson M, et al. Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2013, 47 (17): 9569-9583.
[34] Lukic N, Diezel L L, Fröba A P, et al. Economical aspects of the improvement of a mechanical vapour compression desalination plant by dropwise condensation[J]. Desalination, 2010, 264(1/2): 173-178.
[35] AlkhudhiriA,DarwishN,HilalN.Membranedistillation:Acomprehensive review[J]. Desalination, 2012, 287: 2-18.
[36] El-Bourawi M S, Ding Z, Ma R, et al. A framework for better understanding membrane distillation separation process[J]. Journal of Membrane Science, 2006, 285(1/2): 4-29.
[37] Bonyadi S, Chung T S. Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes[J]. Journal of Membrane Science, 2007, 306(1/2): 134-146.
[38] Bonyadi S, Chung T S, Rajagopalan R. A novel approach to fabricate macrovoid-free and highly permeable PVDF hollow fiber membranes for membrane distillation[J]. AIChE Journal, 2009, 55(3): 828-833.
[39] Wang K Y, Chung T S, Gryta M. Hydrophobic pvdf hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation[J]. Chemical Engineering Science, 2008, 63(9): 2587-2594.
[40] Wang K Y, Foo S W, Chung T S. Mixed matrix pvdf hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation[J]. Industrial & Engineering Chemistry Research, 2009, 48(9): 4474-4483.
[41] Wang K Y, Yang Q, Chung T S, et al. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall[J]. Chemical Engineering Science, 2009, 64 (7): 1577-1584.
[42] Teoh M M, Chung T S. Membrane distillation with hydrophobic macrovoid-free pvdf-ptfe hollow fiber membranes[J]. Separation and Purification Technology, 2009, 66(2): 229-236.
[43] Al-Obaidani S, Curcio E, Macedonio F, et al. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation[J]. Journal of Membrane Science, 2008, 323 (1): 85-98.
[44] Lawson K W, Lloyd D R. Membrane distillation[J]. Journal of Membrane Science, 1997, 124(1): 1-25.
[45] Meindersma G W, Guijt C M, De Haan A B. Desalination and water recycling by air gap membrane distillation[J]. Desalination, 2006, 187 (1-3): 291-301.
[46] 代婷, 武春瑞, 吕晓龙, 等. 腐殖酸聚集体对膜蒸馏过程膜污染的作用机理[J]. 化工学报, 2012, 63(5): 1574-1583. Dai Ting, Wu Chunrui, Lü Xiaolong, et al. Effect of aggregated humic acid on membrane fouling in direct contact membrane distillation[J]. CIESC Journal, 2012, 63(5): 1574-1583.
[47] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87.
[48] Linares R V, Yangali-Quintanilla V, Li Z Y, et al. Rejection of micropollutants by clean and fouled forward osmosis membrane[J]. Water Research, 2011, 45(20): 6737-6744.
[49] Hoover L A, Phillip W A, Tiraferri A, et al. Forward with osmosis: Emerging applications for greater sustainability[J]. Environmental Science & Technology, 2011, 45(23): 9824-9830.
[50] 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260. Wang Yaqin, Xu Tongwen, Wang Huanting. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64 (1): 252-260.
[51] Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348.
[52] Miller D J, Huang X, Li H, et al. Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: A pilot study[J]. Journal of Membrane Science, 2013, 437: 265-275.
[53] Martinetti C R, Childress A E, Cath T Y. High recovery of concentrated ro brines using forward osmosis and membrane distillation[J]. Journal of Membrane Science, 2009, 331(1/2): 31-39.
[54] McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia: Carbon dioxide forward (direct) osmosis desalination process[J]. Desalination, 2005, 174(1): 1-11.
[55] Lee S, Boo C, Elimelech M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)[J]. Journal of Membrane Science, 2010, 365(1/2): 34-39.
[56] Hickenbottom K L, Hancock N T, Hutchings N R, et al. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations[J]. Desalination, 2013, 312: 60-66.
[57] Khaydarov R A, Khaydarov R R. Solar powered direct osmosis desalination[J]. Desalination, 2007, 217(1-3): 225-232.
[58] Wang K Y, Teoh M M, Nugroho A, et al. Integrated forward osmosis– membrane distillation (FO-MD) hybrid system for the concentration of protein solutions[J]. Chemical Engineering Science, 2011, 66(11): 2421-2430.
[59] McGinnis R L, McCutcheon J R, Elimelech M. A novel ammonia-carbon dioxide osmotic heat engine for power generation[J]. Journal of Membrane Science, 2007, 305(1/2): 13-19.
[60] Li D, Zhang X, Yao J, et al. Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering[J]. Soft Matter, 2011, 7(21): 10048-10056.
[61] Ge Q, Wang P, Wan C, et al. Polyelectrolyte-promoted forward osmosismembrane distillation (FO-MD) hybrid process for dye wastewater treatment[J]. Environmental Science & Technology, 2012, 46(11): 6236-6243.
[62] McGinnis R L. Osmotic desalination process: US, 6391205 B1[P]. 2013-11-25.
[63] McCutcheon J R, Mcginnis R L, Elimelech M. Desalination by ammoniacarbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance[J]. Journal of Membrane Science, 2006, 278(1/2): 114-123.
[64] McGinnis R L, Elimelech M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1-3): 370-382.
[65] Ling M M, Chung T S. Novel dual-stage fo system for sustainable protein enrichment using nanoparticles as intermediate draw solutes[J]. Journal of Membrane Science, 2011, 372(1/2): 201-209.
[66] Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011, 278(1-3): 157-164.
[67] Yangali-Quintanilla V, Li Z, Valladares R, et al. Indirect desalination of red sea water with forward osmosis and low pressure reverse osmosis for water reuse[J]. Desalination, 2011, 280(1-3): 160-166.
[68] Bamaga O A, Yokochi A, Beaudry E G. Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units[J]. Desalination and Water Treatment, 2009, 5(1-3): 183-191.
[69] Zhao S, Zou L, Mulcahy D. Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute[J]. Desalination, 2012, 284: 175-181.
[70] Tan C H, Ng H Y. A novel hybrid forward osmosis -nanofiltration (FONF) process for seawater desalination: Draw solution selection and system configuration[J]. Desalination and Water Treatment, 2010, 13(1-3): 356-361.
[71] Ling M M, Chung T S. Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration[J]. Desalination, 2011, 278(1-3): 194-202.
[72] Achilli A, Cath T Y, Childress A E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation[J]. Journal of Membrane Science, 2009, 343(1/2): 42-52.
[73] Ge Q, Ling M, Chung T-S. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future[J]. Journal of Membrane Science, 2013, 442: 225-237.
[74] McGinnis R L, Hancock N T, Nowosielski-Slepowron M S, et al. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines[J]. Desalination, 2013, 312: 67-74.
[75] Jiang Q Y, Rentschler J, Perrone R, et al. Application of ceramic membrane and ion-exchange for the treatment of the flowback water from marcellus shale gas production[J]. Journal of Membrane Science, 2013, 431: 55-61.
[76] MondalS,WickramasingheSR.Producedwatertreatmentbynanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2008, 322(1): 162-170.
[77] Li X M, Zhao B L, Wang Z W, et al. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system[J/OL]. Water Science & Technology [2014-03-26]. http://www.iwaponline.com/wst/up/wst2014003.htm.
[78] Park M Y, Kim E S. Thermodynamic evaluation on the integrated system of VHTR and forward osmosis desalination process[J]. Desalination, 2014, 337: 117-126.
[79] Altaee A, Mabrouk A, Bourouni K. A novel forward osmosis membrane pretreatment of seawater for thermal desalination processes[J]. Desalination, 2013, 326: 19-29.
[80] Mollah M Y A, Morkovsky P, Gomes J A G, et al. Fundamentals, present and future perspectives of electrocoagulation[J]. Journal of Hazardous Materials, 2004, 114(1-3): 199-210.
[81] Akbal F, Camc? S. Comparison of electrocoagulation and chemical coagulation for heavy metal removal[J]. Chemical Engineering & Technology, 2010, 33(10): 1655-1664.
[82] Den W, Wang C J. Removal of silica from brackish water by electrocoagulation pretreatment to prevent fouling of reverse osmosis membranes[J]. Separation and Purification Technology, 2008, 59(3): 318-325.
[83] States S, Casson L, Cyprych G, et al. Bromide in the Allegheny river and THMS in Pittsburgh drinking water: A link with marcellus shale drilling[R]. Phoenix, AZ: University of Pittsburgh School of Engineering, 2011.
[84] Sun M, Lowry G V, Gregory K B. Selective oxidation of bromide in wastewater brines from hydraulic fracturing[J]. Water Research, 2013, 47 (11): 3723-3731.
[85] Abdulgader H A, Kochkodan V, Hilal N. Hybrid ion exchange: Pressure driven membrane processes in water treatment: A review[J]. Separation and Purification Technology, 2013, 116: 253-264.