综述文章

页岩气开采的水污染问题及其综合治理技术

  • 吴青芸 ,
  • 郑猛 ,
  • 胡云霞
展开
  • 1. 中国科学院烟台海岸带研究所, 山东省海岸带环境工程技术研究中心, 烟台 264003;
    2. 中国科学院烟台海岸带研究所, 中国科学院海岸带环境过程与生态修复重点实验室, 烟台 264003
吴青芸,助理研究员,研究方向为聚合物分离膜的设计与制备,电子信箱:qywu@yic.ac.cn

收稿日期: 2013-11-25

  修回日期: 2014-03-26

  网络出版日期: 2014-05-19

基金资助

中国科学院烟台海岸带研究所“一三五”规划重点培育方向项目(Y355041041)

Shale Gas Produced Water Contamination and Its Comprehensive Treatment

  • WU Qingyun ,
  • ZHENG Meng ,
  • HU Yunxia
Expand
  • 1. Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
    2. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Received date: 2013-11-25

  Revised date: 2014-03-26

  Online published: 2014-05-19

摘要

页岩气作为一种清洁、低碳、高储量的非常规天然气能源,已成为全球油气资源勘探开发的新亮点。目前,页岩气最主要的开采方式是水力压裂技术,其开采过程需消耗大量淡水资源,并产生巨量高盐废液。如何经济高效处理页岩气废液和实现水循环利用对页岩气的长足发展和环境保护有着举足轻重的意义。本文从页岩气开采的技术原理出发,分析了开采过程中产生的废水成分特点,讨论了可用于废水处理的技术,包括重复使用法、机械蒸汽压缩法、膜蒸馏法、反渗透法、正渗透法、电絮凝技术、臭氧催化氧化技术等,并评估了各种水处理技术的优势与不足,表明了多种技术杂化综合的水处理系统将成为页岩气开采废水处理方案。

本文引用格式

吴青芸 , 郑猛 , 胡云霞 . 页岩气开采的水污染问题及其综合治理技术[J]. 科技导报, 2014 , 32(13) : 74 -83 . DOI: 10.3981/j.issn.1000-7857.2014.13.013

Abstract

Shale gas is considered a form of clean unconventional natural gas with low carbon footprint and huge reserves, and has increasingly attracted attention as a new energy resource around the world. In recent years, the hydraulic fracturing technique has become very common in wells for shale gas drilling, which consumes tons of fresh water and produces a large amount of high salinity water. Managing the produced water and promoting cost-effective water reuse is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. In this article, the hydraulic fracturing process is reviewed and the composition of shale gas produced water is analyzed. Then, the promising techniques of treating wastewater, including mechanical vapor compression, membrane distillation, reverse osmosis, forward osmosis, electrocoagulation, and ozone catalytic oxidation, are reviewed respectively, followed by a discussion on their advantages and challenges. It is concluded that the hybrid system combing more than one technique to treat wastewater could be a promising approach to real application.

参考文献

[1] Kerr R A. Natural gas from shale bursts onto the scene[J]. Science, 2010, 328(5986): 1624-1626.
[2] Rozell D J, Reaven S J. Water pollution risk associated with natural gas extraction from the marcellus shale[J]. Risk Analysis, 2012, 32(8): 1382-1393.
[3] EkstromV.Thefutureofnaturalgas[R].Massachusetts,USA: Massachusetts Institute of Technology, 2011.
[4] Gregory K B, Vidic R D, Dzombak D A. Water management challenges associated with the production of shale gas by hydraulic fracturing[J]. Elements, 2011, 7(3): 181-186.
[5] Gaudlip A W, Paugh L O, Hayes T D. Marcellus shale water management challenges in pennsylvania[C]//Proceedings of SPE Shale Gas Production Conference. Texas, USA: Society of Petroleum Engineers, 2008.
[6] Thakre P, Shernkar L. Building momentum for advanced water technology solutions: The marcellus effect[R]. San Francisco, CA: The Artemis Project, 2011.
[7] Vidic R D, Brantley S L, Vandenbossche J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1288-1288.
[8] Lutz B D, Lewis A N, Doyle M W. Generation, transport, and disposal of wastewater associated with marcellus shale gas development[J]. Water Resources Research, 2013, 49(2): 647-656.
[9] Council G W P, Consulting A. Modern shale gas development in the United States: A primer[M]. Oklahoma City: Ground Water Protection Council, 2009: 96.
[10] Kargbo D M, Wilhelm R G, Campbell D J. Natural gas plays in the marcellus shale: Challenges and potential opportunities[J]. Environmental Science & Technology, 2010, 44(15): 5679-5684.
[11] Wilson J M, Van Briesen J M. Oil and gas produced water management and surface drinking water sources in pennsylvania[J]. Environmental Practice, 2012, 14: 288-300.
[12] Alley B, Beebe A, Rodgers J, Jr, et al. Chemical and physical characterization of produced waters from conventional and unconventional fossil fuel resources[J]. Chemosphere, 2011, 85(1): 74-82.
[13] Struchtemeyer C G, Elshahed M S. Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in north central texas, USA[J]. Fems Microbiology Ecology, 2012, 81(1): 13-25.
[14] Bonapace J, Giglio M, Moggia J, et al. Water conservation: Reducing fresh water consumption by using produced water for base fluid in hydraulic fracturing-case histories in argentina[C]//Proceedings of SPE Latin America and Caribbean Petroleum Engineering Conference. Mexico: Society of Petroleum Engineers of AIME (SPE), 2012.
[15] Howarth R W, Santoro R, Ingraffea A. Methane and the greenhouse-gas footprint of natural gas from shale formations[J]. Climatic Change, 2011, 106(4): 679-690.
[16] Howarth R W, Santoro R, Ingraffea A. Venting and leaking of methane from shale gas development: Response to Cathles et al[J]. Climatic Change, 2012, 113(2): 537-549.
[17] Tollefson J. Gas drilling taints groundwater[J]. Nature, 2013, 498(7455): 415-416.
[18] Qiu J. Environmental science china to spend billions cleaning up groundwater[J]. Science, 2011, 334(6057): 745-745.
[19] 雷鸣, 曾敏, 王利红, 等. 湖南市场和污染区稻米中As、Pb、Cd污染及其健康风险评价[J]. 环境科学学报, 2010, 30: 2314-2320. Lei Ming, Zeng Min, Wang Lihong, et al. Arenic, lead, and cadmium pollution in rice from Hunan markets and contaminated areas and their health risk assessment[J]. Acta Sientiae Circumstantiae, 2010, 30: 2314-2320.
[20] 王玉梅, 党俊芳. 油气田地区的地下水污染分析[J]. 地质灾害与环境保护, 2000, 11: 271-273. Wang Yumei, Dang Junfang. Groundwater contamination analysis of oil and gas region[J]. Journal of Geological Hazards and Environment Preservation, 2000, 11: 271-273.
[21] Zeng G M, Chen M, Zeng Z T. Shale gas: Surface water also at risk[J]. Nature, 2013, 499(7457): 154-154.
[22] Ferrar K J, Michanowicz D R, Christen C L, et al. Assessment of effluent contaminants from three facilities discharging marcellus shale wastewater to surface waters in pennsylvania[J]. Environmental Science & Technology, 2013, 47(7): 3472-3481.
[23] Olmstead S M, Muehlenbachs L A, Shih J S, et al. Shale gas development impacts on surface water quality in pennsylvania[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 4962-4967.
[24] Entrekin S, Evans-White M, Johnson B, et al. Rapid expansion of natural gas development poses a threat to surface waters[J]. Frontiers in Ecology and the Environment, 2011, 9(9): 503-511.
[25] Williams H F L, Havens D L, Banks K E, et al. Field-based monitoring of sediment runoff from natural gas well sites in Denton County, Texas, USA[J]. Environmental Geology, 2008, 55(7): 1463-1471.
[26] Moore S L, Cripps C M. Bacterial survival in fractured shale-gas wells of the Horn River Basin[J]. Journal of Canadian Petroleum Technology, 2012, 51(4): 283-289.
[27] World Health Organization. Environmental health criteria 216: Disinfectants and disinfectant byproducts[R]. Geneva: World Health Organization, 2000.
[28] Rassenfoss S. From flowback to fracturing: Water recycling grows in the marcellus shale[J]. Journal of Petroleum Technology, 2011, 63: 48-51.
[29] Koren A, Nadav N. Mechanical vapour compression to treat oil field produced water[J]. Desalination, 1994, 98(1-3): 41-48.
[30] Veza J. Mechanical vapour compression desalination plants: A case study[J]. Desalination, 1995, 101(1): 1-10.
[31] Zimerman Z. Development of large capacity high efficiency mechanical vapor compression (MVC) units[J]. Desalination, 1994, 96(1-3): 51-58.
[32] 李清方, 刘中良, 庞会中, 等. 基于机械蒸汽压缩蒸发的油田污水脱盐系统及分析[J]. 化工学报, 2011, 62(7): 1963-1969. Li Qingfang, Liu Zhongliang, Pang Huizhong, et al. Process simulation and analysis of mechanical vapor compression based on oilfiled waste water desalination systems[J]. CIESC Journal, 2011, 62(7): 1963-1969.
[33] Shaffer D L, Arias Chavez L H, Ben-Sasson M, et al. Desalination and reuse of high-salinity shale gas produced water: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2013, 47 (17): 9569-9583.
[34] Lukic N, Diezel L L, Fröba A P, et al. Economical aspects of the improvement of a mechanical vapour compression desalination plant by dropwise condensation[J]. Desalination, 2010, 264(1/2): 173-178.
[35] AlkhudhiriA,DarwishN,HilalN.Membranedistillation:Acomprehensive review[J]. Desalination, 2012, 287: 2-18.
[36] El-Bourawi M S, Ding Z, Ma R, et al. A framework for better understanding membrane distillation separation process[J]. Journal of Membrane Science, 2006, 285(1/2): 4-29.
[37] Bonyadi S, Chung T S. Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic-hydrophobic hollow fiber membranes[J]. Journal of Membrane Science, 2007, 306(1/2): 134-146.
[38] Bonyadi S, Chung T S, Rajagopalan R. A novel approach to fabricate macrovoid-free and highly permeable PVDF hollow fiber membranes for membrane distillation[J]. AIChE Journal, 2009, 55(3): 828-833.
[39] Wang K Y, Chung T S, Gryta M. Hydrophobic pvdf hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the fresh water production through membrane distillation[J]. Chemical Engineering Science, 2008, 63(9): 2587-2594.
[40] Wang K Y, Foo S W, Chung T S. Mixed matrix pvdf hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation[J]. Industrial & Engineering Chemistry Research, 2009, 48(9): 4474-4483.
[41] Wang K Y, Yang Q, Chung T S, et al. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall[J]. Chemical Engineering Science, 2009, 64 (7): 1577-1584.
[42] Teoh M M, Chung T S. Membrane distillation with hydrophobic macrovoid-free pvdf-ptfe hollow fiber membranes[J]. Separation and Purification Technology, 2009, 66(2): 229-236.
[43] Al-Obaidani S, Curcio E, Macedonio F, et al. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation[J]. Journal of Membrane Science, 2008, 323 (1): 85-98.
[44] Lawson K W, Lloyd D R. Membrane distillation[J]. Journal of Membrane Science, 1997, 124(1): 1-25.
[45] Meindersma G W, Guijt C M, De Haan A B. Desalination and water recycling by air gap membrane distillation[J]. Desalination, 2006, 187 (1-3): 291-301.
[46] 代婷, 武春瑞, 吕晓龙, 等. 腐殖酸聚集体对膜蒸馏过程膜污染的作用机理[J]. 化工学报, 2012, 63(5): 1574-1583. Dai Ting, Wu Chunrui, Lü Xiaolong, et al. Effect of aggregated humic acid on membrane fouling in direct contact membrane distillation[J]. CIESC Journal, 2012, 63(5): 1574-1583.
[47] Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2): 70-87.
[48] Linares R V, Yangali-Quintanilla V, Li Z Y, et al. Rejection of micropollutants by clean and fouled forward osmosis membrane[J]. Water Research, 2011, 45(20): 6737-6744.
[49] Hoover L A, Phillip W A, Tiraferri A, et al. Forward with osmosis: Emerging applications for greater sustainability[J]. Environmental Science & Technology, 2011, 45(23): 9824-9830.
[50] 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260. Wang Yaqin, Xu Tongwen, Wang Huanting. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64 (1): 252-260.
[51] Greenlee L F, Lawler D F, Freeman B D, et al. Reverse osmosis desalination: Water sources, technology, and today's challenges[J]. Water Research, 2009, 43(9): 2317-2348.
[52] Miller D J, Huang X, Li H, et al. Fouling-resistant membranes for the treatment of flowback water from hydraulic shale fracturing: A pilot study[J]. Journal of Membrane Science, 2013, 437: 265-275.
[53] Martinetti C R, Childress A E, Cath T Y. High recovery of concentrated ro brines using forward osmosis and membrane distillation[J]. Journal of Membrane Science, 2009, 331(1/2): 31-39.
[54] McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia: Carbon dioxide forward (direct) osmosis desalination process[J]. Desalination, 2005, 174(1): 1-11.
[55] Lee S, Boo C, Elimelech M, et al. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)[J]. Journal of Membrane Science, 2010, 365(1/2): 34-39.
[56] Hickenbottom K L, Hancock N T, Hutchings N R, et al. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations[J]. Desalination, 2013, 312: 60-66.
[57] Khaydarov R A, Khaydarov R R. Solar powered direct osmosis desalination[J]. Desalination, 2007, 217(1-3): 225-232.
[58] Wang K Y, Teoh M M, Nugroho A, et al. Integrated forward osmosis– membrane distillation (FO-MD) hybrid system for the concentration of protein solutions[J]. Chemical Engineering Science, 2011, 66(11): 2421-2430.
[59] McGinnis R L, McCutcheon J R, Elimelech M. A novel ammonia-carbon dioxide osmotic heat engine for power generation[J]. Journal of Membrane Science, 2007, 305(1/2): 13-19.
[60] Li D, Zhang X, Yao J, et al. Composite polymer hydrogels as draw agents in forward osmosis and solar dewatering[J]. Soft Matter, 2011, 7(21): 10048-10056.
[61] Ge Q, Wang P, Wan C, et al. Polyelectrolyte-promoted forward osmosismembrane distillation (FO-MD) hybrid process for dye wastewater treatment[J]. Environmental Science & Technology, 2012, 46(11): 6236-6243.
[62] McGinnis R L. Osmotic desalination process: US, 6391205 B1[P]. 2013-11-25.
[63] McCutcheon J R, Mcginnis R L, Elimelech M. Desalination by ammoniacarbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance[J]. Journal of Membrane Science, 2006, 278(1/2): 114-123.
[64] McGinnis R L, Elimelech M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1-3): 370-382.
[65] Ling M M, Chung T S. Novel dual-stage fo system for sustainable protein enrichment using nanoparticles as intermediate draw solutes[J]. Journal of Membrane Science, 2011, 372(1/2): 201-209.
[66] Zhao S, Zou L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011, 278(1-3): 157-164.
[67] Yangali-Quintanilla V, Li Z, Valladares R, et al. Indirect desalination of red sea water with forward osmosis and low pressure reverse osmosis for water reuse[J]. Desalination, 2011, 280(1-3): 160-166.
[68] Bamaga O A, Yokochi A, Beaudry E G. Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units[J]. Desalination and Water Treatment, 2009, 5(1-3): 183-191.
[69] Zhao S, Zou L, Mulcahy D. Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute[J]. Desalination, 2012, 284: 175-181.
[70] Tan C H, Ng H Y. A novel hybrid forward osmosis -nanofiltration (FONF) process for seawater desalination: Draw solution selection and system configuration[J]. Desalination and Water Treatment, 2010, 13(1-3): 356-361.
[71] Ling M M, Chung T S. Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration[J]. Desalination, 2011, 278(1-3): 194-202.
[72] Achilli A, Cath T Y, Childress A E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation[J]. Journal of Membrane Science, 2009, 343(1/2): 42-52.
[73] Ge Q, Ling M, Chung T-S. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future[J]. Journal of Membrane Science, 2013, 442: 225-237.
[74] McGinnis R L, Hancock N T, Nowosielski-Slepowron M S, et al. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines[J]. Desalination, 2013, 312: 67-74.
[75] Jiang Q Y, Rentschler J, Perrone R, et al. Application of ceramic membrane and ion-exchange for the treatment of the flowback water from marcellus shale gas production[J]. Journal of Membrane Science, 2013, 431: 55-61.
[76] MondalS,WickramasingheSR.Producedwatertreatmentbynanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2008, 322(1): 162-170.
[77] Li X M, Zhao B L, Wang Z W, et al. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system[J/OL]. Water Science & Technology [2014-03-26]. http://www.iwaponline.com/wst/up/wst2014003.htm.
[78] Park M Y, Kim E S. Thermodynamic evaluation on the integrated system of VHTR and forward osmosis desalination process[J]. Desalination, 2014, 337: 117-126.
[79] Altaee A, Mabrouk A, Bourouni K. A novel forward osmosis membrane pretreatment of seawater for thermal desalination processes[J]. Desalination, 2013, 326: 19-29.
[80] Mollah M Y A, Morkovsky P, Gomes J A G, et al. Fundamentals, present and future perspectives of electrocoagulation[J]. Journal of Hazardous Materials, 2004, 114(1-3): 199-210.
[81] Akbal F, Camc? S. Comparison of electrocoagulation and chemical coagulation for heavy metal removal[J]. Chemical Engineering & Technology, 2010, 33(10): 1655-1664.
[82] Den W, Wang C J. Removal of silica from brackish water by electrocoagulation pretreatment to prevent fouling of reverse osmosis membranes[J]. Separation and Purification Technology, 2008, 59(3): 318-325.
[83] States S, Casson L, Cyprych G, et al. Bromide in the Allegheny river and THMS in Pittsburgh drinking water: A link with marcellus shale drilling[R]. Phoenix, AZ: University of Pittsburgh School of Engineering, 2011.
[84] Sun M, Lowry G V, Gregory K B. Selective oxidation of bromide in wastewater brines from hydraulic fracturing[J]. Water Research, 2013, 47 (11): 3723-3731.
[85] Abdulgader H A, Kochkodan V, Hilal N. Hybrid ion exchange: Pressure driven membrane processes in water treatment: A review[J]. Separation and Purification Technology, 2013, 116: 253-264.
文章导航

/